• Title/Summary/Keyword: 하중모형

Search Result 887, Processing Time 0.033 seconds

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings (교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석)

  • Choi, Hyoung-Suk;Kim, Jung-Woo;Gong, Yeong-I;Cheung, Jin-Hwan;Kim, In-Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.

Efficient Dynamic Analysis of High-rise Buildings Having Belt Walls Connected by a Sky-Bridge (스카이브릿지로 연결된 벨트월이 있는 고층건물의 효율적인 동적해석)

  • Lee, Dong-Guen;Kim, Hyun-Su;Yang, Ah-Ram;Ko, Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.231-242
    • /
    • 2009
  • In the design of a sky-bridge, repetitive boundary nonlinear time history analyses are required to accurately predict dynamic behaviors of the connected buildings because the connection systems of a sky-bridge usually have high nonlinearity. If a conventional finite element model for entire high-rise buildings is used for repetitive boundary nonlinear time history analyses, computational efforts could be significant. In this study, an equivalent cantilever model considering the belt-wall effect has been proposed for an efficient dynamic analysis and a performance evaluation of vibration control of high-rise buildings connected by a sky-bridge. To verify the accuracy and efficiency of the proposed equivalent model, boundary nonlinear time history analyses of 49- and 42-story example buildings connected by a sky-bridge have been performed for wind excitation. Based on the analytical results, it has been verified that the proposed equivalent model can provide accurate dynamic responses of building structures connected by a sky-bridge with significantly reduced computational efforts.

Seismic Behavior of Web-Continuous Diagrid Nodes (웨브 연속형 다이아그리드 노드의 이력 특성)

  • Jeong, In Yong;Kim, Young Ju;Ju, Young K;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.375-384
    • /
    • 2009
  • The application of the diagrid structural system has increased of late, but cyclic loadings such as winds and earthquakes cannot be fully understood through only an analytical study due to the difficulty of considering its welding property. In this study, diagrid nodes that had been scaled down to 1/5 of their full sizes were tested to find out their structural behavior under seismic or wind loads. Four specimens were used with five parameters, including the welding method and the design details. Cyclic loading tests were carried out, where a tensile load was applied to one brace member and a compression load to the other. The major failure modes in the tests were only failure of bending with tensile stress and tension failure. The welding method and the design details had no effect on the initial stiffness and yielding stress but play a significant role in the failure mode and energy dissipation, respectively.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cement Composite (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽판의 내진성능)

  • Kim, Sun-Woo;Jeon, Esther;Kim, Yun-Su;Ji, Sang-Kyu;Jang, Gwang-Soo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.89-92
    • /
    • 2008
  • The seismic behavior of the lightly reinforced concrete frames (LRCFs) was controlled by the nonductile behavior of the critical regions. These critical regions require retrofit to improve the seismic behavior of the lightly reinforced concrete frames. Critical column end regions must be retrofit to increase the global ductility capacity. The objective of this research is to evaluate structural strengthening performance of lightly reinforced concrete frame with Strain hardening cement composite(SHCC) experimentally. The experimental investigation consisted of a cyclic load tests on 1/3-scale models of precast infill walls. Reinforcement detail of infill wall was variables in the experiment. The experimental results, as expected, show that the multiple crack pattern, strength, ductility and energy dissipation capacity are superior for specimen with SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

  • PDF

The Earth Pressure Distribution of Crib Wall (Crib Wall의 토압분포)

  • Oh, Sewook;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.41-48
    • /
    • 2006
  • Crib wall is one of the segmental grid retaining walls using headers and stretchers to establish the framework of the wall. In this method, grids formed by the intersection of headers and stretchers are generally filled with the gravel to maintain the weight of the wall. Therefore, the construction can be carried out with higher speed and much economically when compared with the concrete retaining wall. Furthermore, it has high drain capacity, and environmentally friendly aspects also have been pointed out because the possibility of the planting at the front of the wall. However, in the crib wall method, the relative movement between the individual headers and stretchers was generally recognized, and stress redistribution in the gravel filling was also observed when subjected to the external loading and self-weight of filling. Therefore, it has been thought that the distribution of the earth pressure in the crib wall system differ from that of the concrete retaining wall. In this study, the surcharge tests using the scaled model crib wall was carried out to observe the distribution of the earth pressure in the segmental grid retaining wall. The earth pressure was measured in the six specified height of wall, and the distribution of the pressure was analyzed. Furthermore, the earth pressure by computation or by the test using the concrete retaining wall was also considered to make comparison.

  • PDF

The Study for Horizontal Resistance Beyond Yield Condition on Single Pile Using Nonlinear Analysis (비선형 해석 기법을 이용한 항복점 이후의 단일말뚝 수평저항력에 관한 연구)

  • Ryu, Jeong Ho;Cho, Sam Deok;Kim, Dae Hak;Lee, Kwang Wu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.39-44
    • /
    • 2017
  • The behavior of the lateral resistance beyond the yield condition on single pile has been evaluated by comparative analysis. Pushover analysis of single pile has been performed to compare to the results on lateral load test of the pile foundation. The study for the behavior beyond the yield condition on single pile had been performed on the results on the lateral load test and pushover analysis considering mechanical conditions of the ground soil and the pile foundation.

Earth Pressure on the Underground Box Structure (지중 박스구조물에 작용하는 토압)

  • 이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.243-250
    • /
    • 2000
  • The mechanical behavior of the underground box culvert constructed by the open cut method depends mainly on the earth pressure acting on it. In this study, the earth pressure on the underground box culverts constructed by the open cut method during and after the construction sequence was numerically analysed by using FLAC. The results are compared with those of the Marston-Spangler's theory, silo theory, and the model tests. The results showed that the vertical earth pressure on the upper slab of the box structure was not uniform. It was as large as the overburden in the middle part of the slab but was smaller or larger than that at its end part depending on the slope of the excavation, the depth of the cover, and the width of the side refill. The horizontal earth pressure on the side wail was much smaller than the earth pressure at rest and grew nonlinearly with the depth.

  • PDF

Influence of the Anchor Slope on Behaviour of Sheet Pile (앵커의 경사(傾斜)가 널말뚝의 거동(擧動)에 미치는 영향(影響))

  • Chun, Byung Sik;Kang, In Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.79-87
    • /
    • 1989
  • The influence of anchor slope on behavior of sheet pile is analysed by results of model test. It can be seen that the larger inclination of anchor causes more causes more increases of the horizontal and vertical deflection of wall, but the bending moment is less influenced by the inclination of anchor. The negative friction against vertical settlement of wall has the yielding point at the excavation level of 0.71-0.80 H. The redistribution of earth pressure on the sheet pile with dredging must be considered by soil-arching. The zero pressure point from the toe of wall is 20% higher than that of the Free Earth Support Method. It is also observed that the angle of failure planes to major principal plane is larger than the angle of $45^{\circ}+{\phi}/2$.

  • PDF

Strength Prediction Model of Rapid Prototyping Parts - Fused Deposition Modeling (FDM) (쾌속조형재료의 강도예측모델 - Fused Deposition Modeling (FDM))

  • 안성훈;이선영;백창일;추원식
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.38-43
    • /
    • 2002
  • Rapid Prototyping(RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys' Fused Deposition Modeling(FDM) is a typical RP process that can fabricate prototypes out of plastic materials, and the parts made from FDM were often used as load-carrying elements. Because FDM deposits materials in about 300$\mu$m thin filament with designated orientation, parts made from FDM show anisotropic material properties. In this paper an analytic model was proposed to predict the tensile strength of FDM parts. Applying the Classical Lamination Theory, which was developed for laminated composite materials, a computer code was implemented. Tsai-Wu failure criterion was added to the code to predict the failure of the FDM parts. The tensile strengths predicted by the analytic model were compared with experimental data. The data and prediction agreed reasonably well to prove the validity of the model. In addition, a web-based advisory service(FDMAS) was developed to provide strength prediction and design rules for FDM parts.

Dynamic Interaction Analysis of Vehicle-Suspension Bridge Considering Flexural and Torsional Behaviors and Shear Deformation Effects (휨 및 비틀림 거동 및 전단변형 효과를 고려한 차량-현수교의 동적 상호작용 해석)

  • Kim Moon-Young;Lim Myoung-Hun;Kwon Soon-Duck;Kim Ho-Kyung;Kim Nam-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.361-372
    • /
    • 2005
  • In the previous study(Kim 등, 2004), the finite element method was used for the vortical vibration analysis of suspension bridge with the effects of the shear deformation and the rotary inertia under moving load considering the bridge-vehicle interaction. The purpose of this study is to investigate the effect of an eccentric vehicle and shear deformation. So we firstly performs the eigenvalue analysis for the free vortical and the torsional vibration of suspension bridges using FEM analysis. Next the equations of motion considering interaction between suspension bridges and vehicles/trains are derived using the mode superposition method. And then dynamic analysis was performed using the Newmark method. Finally through the numerical examples, the dynamic responses of bridges are investigated according to the proposed procedure.