• Title/Summary/Keyword: 하중모형

Search Result 887, Processing Time 0.028 seconds

Determination of cross section of composite breakwaters with multiple failure modes and system reliability analysis (다중 파괴모드에 의한 혼성제 케이슨의 단면 산정 및 제체에 대한 시스템 신뢰성 해석)

  • Lee, Cheol-Eung;Kim, Sang-Ug;Park, Dong-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.827-837
    • /
    • 2018
  • The stabilities of sliding and overturning of caisson and bearing capacity of mound against eccentric and inclined loads, which possibly happen to a composite caisson breakwaters, have been analyzed by using the technique of multiple failure modes. In deterministic approach, mathematical functions have been first derived from the ultimate limit state equations. Using those functions, the minimum cross section of caisson can straightforwardly be evaluated. By taking a look into some various deterministic analyses, it has been found that the conflict between failure modes can be occurred, such that the stability of bearing capacity of mound decreased as the stability of sliding increased. Therefore, the multiple failure modes for the composite caisson breakwaters should be taken into account simultaneously even in the process of deterministically evaluating the design cross section of caisson. Meanwhile, the reliability analyses on multiple failure modes have been implemented to the cross section determined by the sliding failure mode. It has been shown that the system failure probabilities of the composite breakwater are very behaved differently according to the variation of incident waves. The failure probabilities of system tend also to increase as the crest freeboards of caisson are heightening. The similar behaviors are taken place in cases that the water depths above mound are deepening. Finally, the results of the first-order modal are quite coincided with those of the second-order modal in all conditions of numerical tests performed in this paper. However, the second-order modal have had higher accuracy than the first-order modal. This is mainly due to that some correlations between failure modes can be properly incorporated in the second-order modal. Nevertheless, the first-order modal can also be easily used only when one of failure probabilities among multiple failure modes is extremely larger than others.

Simplified Method for Estimation of Mean Residual Life of Rubble-mound Breakwaters (경사제의 평균 잔류수명 추정을 위한 간편법)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2022
  • A simplified model using the lifetime distribution has been presented to estimate the Mean Residual Life (MRL) of rubble-mound breakwaters, which is not like a stochastic process model based on time-dependent history data to the cumulative damage progress of rubble-mound breakwaters. The parameters involved in the lifetime distribution can be easily estimated by using the upper and lower limits of lifetime and their likelihood that made a judgement by several experts taking account of the initial design lifetime, the past sequences of loads, and others. The simplified model presented in this paper has been applied to the rubble-mound breakwater with TTP armor layer. Wiener Process (WP)-based stochastic model also has been applied together with Monte-Carlo Simulation (MCS) technique to the breakwater of the same condition having time-dependent cumulative damage to TTP armor layer. From the comparison of lifetime distribution obtained from each models including Mean Time To Failure (MTTF), it has found that the lifetime distributions of rubble-mound breakwater can be very satisfactorily fitted by log-normal distribution for all types of cumulative damage progresses, such as exponential, linear, and logarithmic deterioration which are feasible in the real situations. Finally, the MRL of rubble-mound breakwaters estimated by the simplified model presented in this paper have been compared with those by WP stochastic process. It can be shown that results of the presented simplified model have been identical with those of WP stochastic process until any ages in the range of MTT F regardless of the deterioration types. However, a little of differences have been seen at the ages in the neighborhood of MTTF, specially, for the linear and logarithmic deterioration of cumulative damages. For the accurate estimation of MRL of harbor structures, it may be desirable that the stochastic processes should be used to consider properly time-dependent uncertainties of damage deterioration. Nevertheless, the simplified model presented in this paper can be useful in the building of the MRL-based preventive maintenance planning for several kinds of harbor structures, because of which is not needed time-dependent history data about the damage deterioration of structures as mentioned above.

Behavior and Analysis of Laterally Loaded Model Pile in Nak-dong River Fine Sand

  • Kim, Young-Su;Seo
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-46
    • /
    • 1998
  • This paper shows that there are the results of a series of model tests on the behavior of single pipe pile which is subjected to lateral load in, Nak-dong River sand. The purpose of the present paper is to estimate the effect of Non-homogeneity. constraint condition of pile head, lateral load velocity, relative density, and embedded length of pile on the behavior of single pile. These effects can be quantified only by the results of model tests. Also, these are compared with the results of the numerical methods (p-y method, modified Vlasov method; new ${\gamma}$ parameter, Characteristic Load Method'CLM). In this study, a new ${\gamma}$ parameter equation based on the Vlasov method was developed to calculate the modulus of subgrade reaction (E. : nhz.) proportional to the depth. The p-y method of analysis is characterized by nonlinear behavior. and is an effective method of designing deep foundations subjected to lateral loads. The new method, which is called the characteristic load method (CLM). is simpler than p-y analysis. but its results closely approximates p-y analysis results. The method uses dimensional analysis to characterize the nonlinear behavior of laterally loaded piles with respect to be relationships among dimensionless variables. The modulus of subgrade reaction used in p-y analysis and modified Vlasov method obtained from back analysis using direct shear test (DST) results. The coefficients obtained from DST and the modified ones used for the prediction of lateral behavior of ultimate soil reaction range from 0.014 to 0.05. and from 0.2 to 0.4 respectively. It is shown that the predicted numerical results by the new method (CLM), p-y analysis, and modified Vlasov method (new parameter) agree well with measured results as the relative density increases. Also, the characteristic load method established applicability on the Q-Mnu. relationship below y/D=0.2.

  • PDF

A Review on Ultimate Lateral Capacity Prediction of Rigid Drilled Shafts Installed in Sand (사질토에 설치된 강성현장타설말뚝의 극한수평지지력 예측에 관한 재고)

  • Cho Nam Jun;Kulhawy F.H
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • An understanding of soil-structure interaction is the key to rational and economical design for laterally loaded drilled shafts. It is very difficult to formulate the ultimate lateral capacity into a general equation because of the inherent soil nonlincarity, nonhomogeneity, and complexity enhanced by the three dimensional and asymmetric nature of the problem though extensive research works on the behavior of deep foundations subjected to lateral loads have been conducted for several decades. This study reviews the four most well known methods (i.e., Reese, Broms, Hansen, and Davidson) among many design methods according to the specific site conditions, the drilled shaft geometric characteristics (D/B ratios), and the loading conditions. And the hyperbolic lateral capacities (H$_h$) interpreted by the hyperbolic transformation of the load-displacement curves obtained from model tests carried out as a part of this research have been compared with the ultimate lateral capacities (Hu) predicted by the four methods. The H$_u$ / H$_h$ ratios from Reese's and Hansen's methods are 0.966 and 1.015, respectively, which shows both the two methods yield results very close to the test results. Whereas the H$_u$ predicted by Davidson's method is larger than H$_h$ by about $30\%$, the C.0.V. of the predicted lateral capacities by Davidson is the smallest among the four. Broms' method, the simplest among the few methods, gives H$_u$ / H$_h$ : 0.896, which estimates the ultimate lateral capacity smaller than the others because some other resisting sources against lateral loading are neglected in this method. But it results in one of the most reliable methods with the smallest S.D. in predicting the ultimate lateral capacity. Conclusively, none of the four can be superior to the others in a sense of the accuracy of predicting the ultimate lateral capacity. Also, regardless of how sophisticated or complicated the calculating procedures are, the reliability in the lateral capacity predictions seems to be a different issue.

An Experimental Study of the Fatigue Specimen for the Typical Structural Details of the Steel Bridge (강교량의 표준적 구조상세에 대한 실험적 연구)

  • Chung, Yeong Wha;Jo, Jae Byung;Bae, Doo Byong;Jung, Kyoung Sup;Woo, Sang Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.463-473
    • /
    • 2000
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. The welded details included four kinds of welded details corresponding to the categories C, D, E and E' which represent the flange attachment details, web attachment details, transverse stiffeners and cover-plate details. Tensile fatigue tests were performed. The test results were compared with other available test results and the fatigue criteria of AASHTO, JSSC and Eurocode specifications. Generally, our test results were well agreed with other test results and satisfied with above-mentioned fatigue design provisions. However, it was found that transversely loaded weld-details showed lower fatigue strength than longitudinally loaded weld-details in transverse stiffener detail, and the test results of those details were not satisfied with AASHTO fatigue provisions. Examining the effect of length of gusset plate attachment details, welded details with longer attachment showed relatively lower fatigue strength, especially for the out-of-plane gusset plate details. It is recommended to perform additional fatigue tests with various loading and detail parameters and to establish the more detailed fatigue categories such as Eurocode or JSSC

  • PDF

Effects of Vertical Spacing and Length of Reinforcement on the Behaviors of Reinforced Subgrade with Rigid Wall (보강재 간격 및 길이가 강성벽 일체형 보강노반의 거동에 미치는 영향)

  • Kim, Dae-Sang;Park, Seong-Yong;Kim, Ki-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • Facings of mechanically stabilized earth retaining walls have function to fix the reinforcement and prevent backfill loss, but the walls are lack of structural rigidity capable of resisting applied loads. The reinforced subgrade with rigid wall was developed to have the structural functions under train loading. Though it has lots of advantages such as small deformation after construction, its negative side effects of economics and difficult construction were mainly mentioned and not practically used. To apply it for railroad subgrade, this study focus on the construction cost down and the enhancement of constructability without functional loss. To do so, the behaviors of reinforced subgrade with rigid wall were evaluated with the change of the vertical spacing and length of reinforcement. Small scale model tests (1/10 scale) and 3 m full scale tests were performed to evaluate deformation characteristics of reinforced subgrade under simulated train loading. Even though it uses short reinforcement, it showed small horizontal displacement of wall and plastic settlement of subgrade. Also, it was verified that not only 30 cm but also 40 cm of vertical spacing of reinforcement had good performance in serviceability aspects.

Comparison of Sediment Disaster Risk Depending on Bedrock using LSMAP (LSMAP을 활용한 기반암별 토사재해 위험도 비교)

  • Choi, Won-il;Choi, Eun-hwa;Jeon, Seong-kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • For the purpose of the study, of the 76 areas subject to preliminary concentrated management on sediment disaster in the downtown area, 9 areas were selected as research areas. They were classified into three stratified rock areas (Gyeongsan City, Goheung-gun and Daegu Metropolitan City), three igneous rock areas (Daejeon City, Sejong Special Self-Governing City and Wonju City) and three metamorphic rock areas (Namyangju City, Uiwang City and Inje District) according to the characteristics of the bedrock in the research areas. As for the 9 areas, analyses were conducted based on tests required to calculate soil characteristics, a predictive model for root adhesive power, loading of trees and on-the-spot research. As for a rainfall scenario (rainfall intensity), the probability of rainfall was applied as offered by APEC Climate Center (APCC) in Busan. As for the prediction of landslide risks in the 9 areas, TRIGRS and LSMAP were applied. As a result of TRIGRIS prediction, the risk rate was recorded 30.45% in stratified rock areas, 41.03% in igneous rock areas and 45.04% in metamorphic rock areas on average. As a result of LSMAP prediction based on root cohesion and the weight of trees according to crown density, it turned out to a 1.34% risk rate in the stratified rock areas, 2.76% in the igneous rock areas and 1.64% in the metamorphic rock areas. Analysis through LSMAP was considered to be relatively local predictive rather than analysis using TRIGRS.

A Study on Strength of Plat-Plate Wall-Column Connections (Wall Column을 적용한 플랫플레이트 접합부 강도발현에 관한 연구)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.257-266
    • /
    • 2006
  • Flat-plate building systems are utilized extensively for construction of apartments, hotels and office buildings because of short construction period, low floor-to-floor height and flexibility in plan design. Recently, to increase lateral seismic resistance of flat-plate building systems, wall-columns are used frequently. Therefore, to estimate strength of flat-plate column connection accurately, the effect of column section shape on the behavior of flat-plate column connection should be considered properly, In the present study, a numerical analysis was performed for interior connections of continuous flat-plate to analyze the effect of column section shape. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. Therefore, these effects should be considered properly to estimate the strength of flat-plate connection accurately.

Estimation of Ultimate Bearing Capacity of Gravel Compaction Piles Using Nonlinear Regression Analysis (비선형 회귀분석을 이용한 쇄석다짐말뚝의 극한지지력 예측)

  • Park, Joon Mo;Han, Yong Bae;Jang, Yeon Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.112-121
    • /
    • 2013
  • The calibration of resistance factor in reliability theory for limit state design of gravel compaction piles (GCP) requires a reliable estimate of ultimate bearing capacity. The static load test is commonly used in geotechnical engineering practice to predict the ultimate bearing capacity. Many graphical methods are specified in the design standard to define the ultimate bearing capacity based on the load-settlement curve. However, it has some disadvantages to ensure reliability to obtain an uniform ultimate load depend on engineering judgement. In this study, a well-fitting nonlinear regression model is proposed to estimate the ultimate bearing capacity, for which a nonlinear regression analysis is applied to estimate the ultimate bearing capacity of GCP and the results are compared with those calculated using previous graphical method. Affect the resistance factor of the estimate method were analyzed. To provide a database in the development of limit state design, the load test conditions for predicting the ultimate bearing capacity from static load test are examined.

Development of a Procedure for Remaining Life Estimation in Airfield Concrete Pavement (공항 콘크리트 포장의 잔존수명 산출 논리 개선 연구)

  • Kwon Soo-Ahn;Suh Young-Chan;Cho Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.131-138
    • /
    • 2006
  • Methods of back calculation for either design procedures or elastic moduli obtained from FWD(Falling Weight Deflectometer) tests have widely been used to predict remaining life of airfield concrete pavements. Since the variation of the elastic modulus obtained from the FWD test depends on the back calculation methods, prediction of remaining life of airfield pavement using the back calculation method has not been reliable. In addition, the FWD method only concentrates on the structural integrity of the pavement without considering functional distress. In this study, a newly developed remaining life estimation procedure is proposed. This methodology includes both structural and functional consideration and suggests models and decision criteria for each stage. In order to improve the estimation procedure on remaining life of pavement, conducted the several tests on an old airfield concrete pavement. As a result, it is concluded that the load transfer efficiency on joint is better for predicting remaining life of pavement than the elastic modulus, which is commonly used. In order to verify applicability of the newly developed estimation procedure and detailed models, investigation and analysis were conducted according to the new methodology on C-airfield pavement. Finally, it is confirmed that the efficiency of the proposed method for practical application was good enough.

  • PDF