DOI QR코드

DOI QR Code

Estimation of Ultimate Bearing Capacity of Gravel Compaction Piles Using Nonlinear Regression Analysis

비선형 회귀분석을 이용한 쇄석다짐말뚝의 극한지지력 예측

  • Park, Joon Mo (Department of Civil and Environmental Engineering, Dongguk University) ;
  • Han, Yong Bae (Department of Civil and Environmental Engineering, Dongguk University) ;
  • Jang, Yeon Soo (Department of Civil and Environmental Engineering, Dongguk University)
  • 박준모 (동국대학교 건설환경공학과) ;
  • 한용배 (동국대학교 건설환경공학과) ;
  • 장연수 (동국대학교 건설환경공학과)
  • Received : 2013.03.07
  • Accepted : 2013.04.30
  • Published : 2013.04.30

Abstract

The calibration of resistance factor in reliability theory for limit state design of gravel compaction piles (GCP) requires a reliable estimate of ultimate bearing capacity. The static load test is commonly used in geotechnical engineering practice to predict the ultimate bearing capacity. Many graphical methods are specified in the design standard to define the ultimate bearing capacity based on the load-settlement curve. However, it has some disadvantages to ensure reliability to obtain an uniform ultimate load depend on engineering judgement. In this study, a well-fitting nonlinear regression model is proposed to estimate the ultimate bearing capacity, for which a nonlinear regression analysis is applied to estimate the ultimate bearing capacity of GCP and the results are compared with those calculated using previous graphical method. Affect the resistance factor of the estimate method were analyzed. To provide a database in the development of limit state design, the load test conditions for predicting the ultimate bearing capacity from static load test are examined.

쇄석다짐말뚝의 한계상태설계법에서 신뢰성이론에 기반한 저항계수를 보정하기 위해서는 신뢰도 높은 극한지지력의 평가가 요구되고 있으며, 실무에서는 극한지지력을 예측하기 위하여 주로 정재하시험을 이용하고 있다. 정재하시험의 하중-침하량 곡선을 여러 도해법 등을 이용하여 극한지지력을 예측하는 평가법들이 설계기준에 제시되어 있으나, 기술자의 판단에 따라 극한하중이 일정하게 산정되지 못함으로써 신뢰성을 확보하기 어려운 단점이 있었다. 본 연구에서는 쇄석다짐말뚝의 정재하시험 결과를 비선형 회귀분석을 이용하여 극한지지력을 예측하고, 기존의 극한지지력 판정법과 비교함으로써 실제 극한지지력을 예측하는데 적합한 비선형 회귀모형을 제안하였다. 또한 극한지지력 판정법이 저항편향계수에 미치는 영향을 분석하고, 한계상태설계법을 위한 데이터베이스 축적을 목적으로 정재하시험을 계획하는데 필요한 시험조건을 검토하였다.

Keywords

References

  1. 김상귀, 여규권, 이태병, 박기형, 최용규 (2010). 현장 재하시험을 통한 변단면 쇄석다짐말뚝의 군말뚝 지지특성. 대한토목학회 정기학술대회, pp. 1632-1635.
  2. 류정수, 김석열 (1995). 최대곡률 방법을 이용한 말뚝의 연직지지력 연구. 한국지반공학회지, 11(4), 5-12.
  3. 배경태, 이종규 (2007). 연약지반의 쇄석다짐말뚝에 대한 거동분석 (I). 한국지반공학회논문집, 23(4), 169-183.
  4. 원상연, 황성일, 조남준 (1996). 쌍곡선 근사에 의한 현장타설 말뚝의 항복하중 판정. 한국지반공학회지, 12(6), 79-86.
  5. 윤준식, 강윤, 유찬호, 김홍택 (2007). 기초의 강성차이에 따른 쇄석말뚝 거동 평가. 한국지반환경공학회 학술발표회논문집, pp. 267-274.
  6. 이민희, 최용규, 임종철, 황근배 (2003). 현장재하시험을 통한 쇄석다짐말뚝의 응력분담에 관한 연구. 한국지반공학회논문집, 19(6), 107-114.
  7. 이봉직, 배우석, 이준대 (2000). 매립지반에 적용된 쇄석말뚝의 보강효과. 한국안전학회지, 15(2), 97-102.
  8. 정철호, 정상문, 이철 (1993). 현장타설 석재기둥 공법의 실험적 연구. 주택연구소연구결과요약집, 2, pp. 155-163.
  9. 천병식, 최현석, 이용한 (2000). Gravel Pile의 지지력 특성에 관한 연구. 대한토목학회 학술발표회논문집, (2), pp. 493-496.
  10. 천병식, 김원철, 조양운 (2004a). 단일 쇄석다짐말뚝의 지지력 예측방법에 대한 비교 연구. 한국지반환경공학회논문집, 5(1), 55-64.
  11. 천병식, 김경민, 김준호 (2004b). 중간기초개념으로서 짧은쇄석 다짐말뚝의 지지력 특성에 관한 연구. 한국해양공학회 추계학술대회 논문집, pp. 247-252.
  12. 최용규 (2007). 단일쇄석말뚝의 지지력 증가효과에 관한 현장실험 연구, 한국지반공학회논문집, 23(12), 5-11.
  13. 한국지반공학회 (2009). 구조물 기초 설계기준 해설. 구미서관.
  14. 황정순, 김홍택, 김정호, 이상경, 이형규 (2005). 조립토 다짐말 뚝에 대한 현장재하시험 결과 및 간편 침하량 산정방법의 제시. 한국지반공학회논문집, 21(3), 159-168.
  15. AASHTO (2010). AASHTO LRFD Bridge Design Specifications, Fifth Edition, American Association of State Highway and Transportation Officials, Washington, D.C.
  16. Baumann, V. and Bauer, G. E. A. (1974). "The performance of foundation on various soils stabilized by vibrocompaction method", Canadian Geotechnical Journal, 11, 509-530. https://doi.org/10.1139/t74-056
  17. Bea, K. T. and Lee, C. K. (2007). "The behavior of rammed aggregate piers(RAP) in soft ground (I), Journal of Korean Geotechnical Society, 23(4), 169-183 (in Korean).
  18. Brauns, J. (1978). "Die anfangstraglast von schottersauen im bingigen untergrund", Die bautechink, 8, 263-271.
  19. Butler, H.D. and Hoy, H.E. (1977). Users Manual for the Texas Quick-Load Method for Foundation Load Testing. FHWA-IP-77-8. FHWA, Office of Development, Washington, DC.
  20. Chin, F. K. (1971). "Pile tests- Arkansas river project", Journal of Soil Mechanics and Foundation Division, ASCE, 97(SM6), pp. 930-932.
  21. Davisson, M. (1972). High Capacity Piles. In Proceedings, Soil, Mechanics Lecture Series on Innovations in Foundation Construction, ASCE, Illinois Section, Chicago, IL, pp. 81-112.
  22. DeBeer, E. (1970). Proefondervindellijke bijdrage tot de studie van het grandsdraagvermogen van zand onder funderinger op staal. English version. Geotechnique, 20(4), 387-411. https://doi.org/10.1680/geot.1970.20.4.387
  23. Hagan, M. T., Demuth, H. P. and Beale, M. (1996). Neural Network Design, PWS Publishing, Boston.
  24. Hansbo, S. (1994). Foundation Engineering, Developments in Geotechnical Engineering, Elsevier Press, 95, 450-455.
  25. Hughes, J. M. O. and Withers, N. J. (1974). "Reinforcing of soft cohesive soils with stone column", Ground Engineerng, 7(3), 42-49.
  26. Kim, S. K., Yea, G. G., Lee, T. B., Park, K. H. and Choi, Y. K. (2007). "Bearing capacity characteristics of taper granular compaction group piles and field load test", Korean Society of Civil Engineers(KSCE) Annual Conference, pp. 1632-1635 (in Korean).
  27. Kondner, R. L. (1963). "Hyperbolic stress-strain response: cohesive soils", Journal of Soil Mechanics and Foundation Division, ASCE, 89(SM1), pp. 115-143.
  28. Lillis, C., Lutenegger, A. J. and Adams, M. (2004), "Compression in uplift of rammed aggregate piers in clay", GeoSupport 2004, GSP No. 124, ASCE, Edited by J. P. Turner and P. W. Mayne, Reston, VA.
  29. Paikowsky, S., Birgission, G., McVay, M., Nguyen, T., Kuo, C., Baecher, G., Ayyub, B., Stenerson, K., O'Mally, K., Chernauskas, L. and O'Neill, M. (2004). NCHRP Report 507: Load and Resistance Factor Design(LRFD) for Deep Foundations, Transportation Research Board of the National Academies, Washington, DC.
  30. Paikowsky, S. G., Canniff, M. C., Lesny, K., Kisse, A., Amatya, S. and Muganga, R. (2010). NCHRP Report 651: LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures, Transportation Research Board of the National Academies, Washington, DC.
  31. Park, J. H., Huh, J., Kim, M. M. and Kwak, K. (2008). "Resistance factors of driven steel pipe piles for LRFD design in Korea", Journal of Korean Society of Civil Engineering, 28(6C), pp. 367-377 (in Korean).
  32. Pitt, J. M., White, D. J., Gaul, A. and Hoevelcamp, K. (2003). "Highway application for rammed aggregate piers in Iowa soils", Final Report, Iowa DOT Project TR-443, CTRE Project 00-60.
  33. Stuedlein, A. W. (2008). Bearing capacity and displacement of spread footings on aggregate pier reinforced clay, Ph.D. Dissertation, University of Washington.
  34. Terzaghi, K. (1942). Discussion of the Progress Report of the Committee on the Bearing Value of Pile Foundations. Proceedings, ASCE. 68, 311-323.
  35. Timoshenko, S. P. (1963). Theory of elastic stability, McGraw-Hill, pp. 190-192.
  36. Vesic, A. S. (1972). "Expantion of cavities in infinite soil mass", Journal of Soil Mechanics and Foundation, ASCE, 98(SM3), pp. 265-290.
  37. Weibull, W. (1951). A Statistical distribution function of wide applicability, Journal of Applied Mechanics ASME Paper, 18, 293-296.

Cited by

  1. Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear vol.15, pp.2, 2016, https://doi.org/10.12814/jkgss.2016.15.2.065