• Title/Summary/Keyword: 하중감소기법

Search Result 142, Processing Time 0.021 seconds

Seismic Behavior of A 2/5-Scale Steel Structure with Added Viscoelastic Dampers (점탄성 감쇠기를 설치한 2/5 축척 강구조물의 지진하중에 의한 거동연구)

  • Oh, Soon-Taek
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.80-87
    • /
    • 1993
  • This paper summarizes an experimental and analytical study on the application of viscoelastic dampers as energy dissipation devices in structural applications. Shaking table tests are carried out on the viscoelastically damped structure and the obtained structural responses are compared to those of the inelastic analysis results for the same test structure with no dampers added. It can be concluded the viscoelastic dampers are effective in reducing excessive vibrations of structures under strong earthquake ground motions. It is also observed that the increase in structure's stiffness by the addition of dampers can not contribute to improving the seismic response of a structure. In general. the reduction of the seismic response by adding the dampers to the structure is mostly resulted from the increased damping effect. It is found that the modal strain energy method can be used to reliably predict the equivalent structural damping. and the seismic response of a viscoelastically damped structure can be accurately estimated by conventional modal analysis techniques.

  • PDF

Mechanical behaviour of rib-reinforced precast tunnel liner according to variable rib-reinforcement shapes (프리캐스트 터널 Liner의 리브보강 형상변화에 따른 역학적 거동 특성)

  • Lee, Gyu-Phil;Lee, Seong-Won;Hwang, Jae-Hong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.265-275
    • /
    • 2009
  • Due to the limitation of construction efficiency and structural safety, the application of the high covering and wide width tunnels was limited prior to the introduction of precast rut and cover tunnels. Therefore, a cut and cover tunnel structure with rib reinforcement is proposed to mechanically improve the safety on condition of high covering and wide width tunnel. Therefore, a technical problem that can provide a response similar to the actual filling conditions is analyzed by the finite element analyses, moreover, the mechanical behaviour of developed rib-reinforced precast tunnel liner through a large-sized model test will be investigated. The ultimate load of the developed rib-reinforced precast tunnel liner shows a 3% reduction compared to existing rib-reinforced precast tunnel liner, especially, the section of rib-reinforcement decreased to 55% compared to it of existing. Therefore, the stability of tunnel structure can be significantly improved through the developed rib-reinforced precast segment.

Experimental and Finite Element Study of Tribological Characteristics of SU-8 Thin Film (실험 및 유한요소해석에 의한 SU-8 박막의 Tribological 특성 연구)

  • Yang, Woo Yul;Shin, Myounggeun;Kim, Hyung Man;Han, Sangchul;Sung, In-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.467-473
    • /
    • 2013
  • In this study, two-dimensional finite element models were developed and experiments were conducted using an atomic force microscope to investigate the tribological characteristics of an SU-8 layer coated on a patterned wafer for microsystem applications. The results revealed that both the adhesion and the friction forces measured by the atomic force microscope were lower for the SU-8 coated surface than for the bare silicon surface. This is attributed to the hydrophobicity of SU-8. Another important result derived from the finite element analysis was the critical load required to fracture the SU-8 film with respect to the thickness. The critical loads for thicknesses of 200, 400, and 800 nm were approximately 13, 22, and 28 mN, respectively, which corresponded to a Hertzian contact pressure of 1.2-1.8 GPa. These results will aid in the design of a suitable SU-8 thickness for microsystem components that are in contact with one another.

A Study on the Seismic Performance of Energy-Dissipating Sacrificial Devices for Steel Plate Ginder Bridges (강합성 거더교에 적용된 희생부재형 에너지소산장치의 내진성능에 관한 연구)

  • Cho, Kwang-Il;Gwak, Pil-Bong;Mha, Ho-Seong;Kim, Sang-Hyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.87-96
    • /
    • 2007
  • A new Energy-Dissipating Sacrificial Device (EDSD) is developed for steel plate girders, which can effectively dissipate the energy stored in the structures during seismic actions. To verify the performance of the EDSD, various seismic responses of a sample bridge with the EDSD are analyzed in terms of energy, member forces and deformation. The full scale model tests are conducted to certify the performance of the EDSD when it is applied on existing bridges. Using the improved hysteretic model of the sacrificial member, the seismic analysis for an example bridge is performed. The results show that the proposed EDSD under seismic excitations can significantly decrease the energy stored in the bridge structures and reduce the relative displacements of each superstructure to the ground. The EDSD is also found to function as a structural fuse under strong ground motions, sacrificing itself to absorb the excessive energy. Consequently, economical enhancement of the seismic performance of bridges can be achieved by employing the newly developed energy-dissipating sacrificial device.

Analytical Study on Flexural Behavior of Concrete Member using Heavyweight Waste Glass as Fine Aggregate (고밀도 폐유리를 잔골재로 사용한 RC 부재의 휨거동에 관한 해석적 연구)

  • Cha, Kyoung-Moon;Choi, So-Yoeng;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • It were found that the heavyweight waste glass can be used as a construction materials including concrete from previous experimental studies. In this study, in order to evaluate the structural behavior of RC members using heavyweight waste glass as fine aggregate, a flexural behavior test was performed. And then, its results were compared with those obtained from non-linear finite element model analysis. From the results, when the heavyweight waste glass as fine aggregate in RC member, the area of compressive crushing and the number of cracks increased, however, the mean of cracking spacing decreased. Also it had reduced the ductility at high loading stage. For this reason, the same analysis method about the RC member using natural sand as fine aggregate did not predict the initial stiffness, yield load and maximum load on the flexural behavior of the RC members using heavyweight waste glass as fine aggregate. On the other hand, when it is analytically implemented the reduction of neutral axis depth due to developed compression crushing, the results of non-linear finite element analysis could be predicted the experimental results, relatively well.

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

The Flame and Distributed Temperature Restraint Properties of Fire Venetian Blind Louver in Buildings (차양식 방화루버의 화염 및 온도 전파 억제 특성)

  • Chae, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.120-127
    • /
    • 2015
  • The purpose of this study is to improve the fire prevention performance using the fire venetian blind louver subjected to burning by fire flame. The investigation is based on testing 2 full scale specimens, which is $3m{\times}3m$ module, $850mm{\times}1,500mm$ open, and $900mm{\times}900mm{\times}175mm$ venetian blind louver. Two louver thickness (1.5 and 2.0mm) were adopted. The specimens were exposed to fire flame temperature levels of ISO834 at the lower surface of the fire venetian blind louver specimens with exposure duration of one hour in Korea Institute of Construction Technology (KICT). It was found from the test results that the values of distributed temperature, decreased for all specimens for protecting to fire flame by venetian blind louver. The results of tests were a good fire prevention performance between in initial to 6 mins. At 60 minutes around ISO 834 fire loading, the percentages of distributed temperature in 500mm and 800mm height ranged between 11 and 10% respectively, regardless of louver thickness. This study, therefore, will improve the fire venetian blind louver for fire protection and prevention performance.

Experimental Study on the Structural Integrity of Type IV Hydrogen Pressure Vessels Experienced Impact Loadings (충격 하중 조건에서의 Type IV 수소 압력용기 구조건전성 분석)

  • Han, Min-Gu;Jung, Kyung-Chae;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.60-65
    • /
    • 2016
  • In this paper, finite element analysis and real time monitoring experimental work using FBG sensor were carried out for analyzing structural integrity of a Type IV hydrogen pressure vessel under impact loading condition. By using finite element analysis with the ply based modeling technique, sensor insertion points and pressure condition were suggested. Tensile test with an angle ply specimen was conducted for getting the reliability of FBG sensor insertion method. After fabricating the vessel, total five times pressurization fatigue tests were conducted (Non-impact pressurization: 1, After impact pressurization: 4). Experimental results revealed that filling cycle time was gradually increased and filling gradient was decreased when the vessel experienced impact.

An Experimental Study on Crack Detection of RC Structure using Measured Strain (측정변형률을 이용한 RC 구조물의 균열검출에 관한 실험적 연구)

  • Park, Ki-Tae;Park, Hung-Seok;Lee, Kyu-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.193-199
    • /
    • 2002
  • Structral crack of RC structure generally occurs when the tension stress by applied load is larger than tension resistance of concrete, and it means deterioration of structure and the decrease of load resistance. Because structural crack of structure can occur critical damage to structure occasionally, the research on crack detection algorithm of RC structure is needed for assurance of structural safety and effective maintenance of structure. In this paper, we executed the laboratory test on measuring strain of RC beam's tension and compression zone, using strain gauge which is widely used on strain measurement of civil structure. By using measured strain, we analyzed strain change, elastic modulus change, and neutral axis change to detect crack of RC beam. As a result, we proposed the simple and effective crack detection algorithm using trends of neutral axis position change.

Reliability Analysis of the Long Caisson Breakwater Considering to the Wave Force Reduction Parameter (파력감소계수를 고려한 장대케이슨 방파제의 신뢰성해석)

  • Lee, Gee Nam;Park, Woo Sun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2017
  • The actual wave is multi-direction irregular wave. In the case of a long structure, a reduction effect of the wave occurs. In this study, in order to grasp the extent to which these influences contribute to the failure probability and compare the existing modular breakwaters to the stability, we used existing modular breakwaters and long caisson breakwaters using wave force reduction parameter to analysis the reliability. As a result, the reliability index of the long caisson breakwater was higher than that of the existing modular caisson breakwater, and it was confirmed that the significant wave height of the design variables had the highest influence. In addition, the reliability analysis was performed according to the change of the mean value of the variables used in the calculation of the wave force reduction parameter. It is confirmed that the relationship between each variable value and the wave force reduction parameter appears in the analysis results.