• Title/Summary/Keyword: 하중(load)

Search Result 6,827, Processing Time 0.031 seconds

The study of load measurement on U50 wind turbine (U50 풍력발전기 하중측정 실증연구)

  • Cho, Joo-Suk;Hong, Hyeok-Soo;Bang, Jo-Hyug;Park, Jin-Il;Ryu, Ji-Yune;Gil, Kye-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.341-344
    • /
    • 2007
  • This paper addresses the measurement of structural loads on the Unison U50 wind turbine. The load measurement are carried out to determine the actual loads acting on a wind turbine. This is needed not only the certification process but also improving the technical development for prototype wind turbine. The measurement system is consists of measuring load, operating quantities and meteorological signal. All data that occur during the operating of a WT are stored the data acquisition system automatically. With using the measured data, load spectrum and equivalent load are evaluated according to IEC61400-13 "Measurement of mechanical loads".

  • PDF

Load Transfer of Tension and Compression Anchors in Weathered Soil (인장형 앵커와 압축형 앵커의 하중전이에 관한 연구)

  • 김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.59-68
    • /
    • 2001
  • 풍화토 지반에 설치된 그라운드 앵커의 하중전이 현상을 규명하기 위하여 성균관대학교 지반시험장에서 인발시험을 수행하였다. 지반과 구조물을 일체화시키는데 사용하는 앵커는 앵커체와 지반의 마찰력에 의해서 구조물을 지지하는 역할을 하며 앵커의 하중과 변형의 관계를 규명하기 위해서는 앵커의 마찰력 분포의 변화(하중전이)가 중요한 요소가 된다. 하중 재하시 앵커체에 발생하는 하중전이 분포는 앵커의 인발 지지력과 밀접한 관계가 있고 앵커체의 종류(인장형 또는 압축형), 정착장의 길이, 지반 조건 등에 따라 분포 양상이 변하기 때문에 하중전이를 이해하기 위해서는 강선과 그라우트의 하중분포 그리고 앵커 그라우트체와 지반과의 마찰력 분포를 알아야 한다. 앵커의 자유장의 강선에 작용하는 응력, 그라우트체에 작용하는 응력, 그리고 정착장 강선의 응력을 계측하여 강선과 그라우트의 정착응력 및 그라우트와 지반에서의 마찰력 분포를 구함으로써 강선-그라우트-지반의 복합적인 거동에 따른 각 하중 단계마다의 하중전이 분포를 구하였다. 또한 현장시험 결과의 신뢰성 확보를 위하여 수치해석 모델링을 통하여 해석을 수행하여 비교하였다.

  • PDF

Cyling Load Test of Architectural Glass Fiber Membrane (건축용 유리섬유 막재의 반복하중 시험)

  • Park, Kang-Geun;Yoon, Sung-Kee;Lee, Jang-Bok;Jun, Woo-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.31-36
    • /
    • 2008
  • Architectural membrane are now used in the roof of large span structures throughout the world with the merits of free shape and lightness. Some membrane have some problems of structural capacity by the wind or snow load conditions, large span structures was shown to the tearing of the membrane. This paper is the experimental test on the stress strain curve of cycling load for the glass fiber membrane. In the result of stress strain relationship curve by the cycling load, glass fiber membrane was reduced the tensile strength, the polyester membrane was shown to occur the increase of displacement without load reduction in each load step.

  • PDF

Load & Resistance Factors Calibration for Front Covered Caisson Breakwater (소파블록 피복제 제체의 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn;Huh, Jungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • Calibration of load-resistance factors for the limit state design of front covered caisson breakwaters were presented. Reliability analysis of the breakwaters which are constructed in Korean coast was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, load-resistance factors were compared with foreign country's code for verification.

Static Load Test for Verification of Structural Robustness of Composite Oxidant Tank for Space Launch Vehicle (우주발사체용 복합재 산화제탱크 구조 강건성 검증을 위한 정하중 시험)

  • Kim, Hyun-gi;Kim, Sungchan
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.98-105
    • /
    • 2021
  • This study presented the results of the static load tests conducted to verify the structural robustness of the composite oxidant tank for a space launch vehicle. First, we introduced the test equipment used in the static load test of the composite oxidant tank, and then described the test requirements that the composite oxidant tank must satisfy. In addition, we presented a test set-up diagram consisting of the static load test fixture, hydraulic pressure, control equipment, and data acquisition equipment, and the load profile of the static load test of the composite oxidant tank consisting of shear, equivalent compression, bending, and combination tests. As a result of load control, we verified the reliability of this test by showing the errors between the input load and the feedback load in each channel according to the increase of the test load, and the feedback error between the channel A and channel B of load cell in each load actuator. As a result of the static load test, the load of the actuator was properly controlled within the allowable error range in each test, and we found that the test specimen did not cause damage or buckling that causes significant structural defects in the required load.

Load-Transfer Analysis by Considering Coupled Soil Resistance (말뚝-지반 상호작용을 고려한 수정된 하중전이함수법 제안)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Kim, Young-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.359-366
    • /
    • 2008
  • The load distribution and deformation of pile subjected to axial loads are evaluated by a load-transfer method. The emphasis is on quantifying the effect of coupled soil resistance that is closely related to the ratio of pile diameter to soil modulus $(D/E_s)$ and the ratio of total shaft resistance against total applied load $(R_s/Q)$, in rock-socketed drilled shafts using the coupled load-transfer method. The proposed analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Through comparisons with field case studies, it was found that the proposed method in the present study estimated reasonable load transfer behavior of pile and coupling effects due to the transfer of shaft shear loading, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.

A Study on the Comparisom of Load-carrying Capacity by the rating Methods of Bridges (교량평가법에 의한 내하력 비교에 관한 연구)

  • Han, Sang Chul;Yang, Seung Ie
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.477-492
    • /
    • 2001
  • About half of bridges in United States are considered to be deficient and therefore are in need of repair or replacement. Half of these are functionally obsolete, and others do not have required strength For these bridges repairs and replacements are needed To avoid the high cost of rehabilitation the bridge rating must corectly report the present load-carrying capacity Rating engineers use Allowable Stress Design(ASD) Load Factor Design(LFD), and Load Resistance Factor Design(LRFD) to evaluate the bridge load carrying capacity In this paper the load rating methods are introduced and bridge load test data are collected. The reasons that make the difference between test results and analytical results are explained for each bridge load test And load rating methods are applied to real bridge. The rating factors from each method are compared.

  • PDF

A Study on the Loading Capacity Standard of Bi-directional Pile Load Test (BD PLT) (양방향말뚝재하시험의 재하용량 기준에 관한 연구)

  • Choi, Yongkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.379-388
    • /
    • 2008
  • In the bi-directional pile load test (BD PLT) for pile load tests of Mega pile foundations, loading capacity standard is not specified exactly. Therefore there are so many confusions in performing the BD PLT and variations up to maximum 2 times in loading capacity are come out. In this study, standards of bi-directional pile load test (BD PLT) were considered. Based on cases of the bi-directional pile load test performed in domestic areas, maximum equivalent test load, test load increasing ratio, loading capacity increasing ratio and sufficiency ratio of design load were analyzed. It could be known that the loading capacity standard of bi-directional pile load test must be defined as 1-directional loading capacity and also must be established as more than 2 times of design load.

Experimental Study for Load Distribution Characteristics of Existing and Reinforcing Piles (기존말뚝과 보강말뚝의 하중분담 특성에 관한 실험적 연구)

  • Cho, Seonghun;Choi, Kisun;Cho, Samdeok;You, Youngchan;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.87-95
    • /
    • 2014
  • Recently, there are increasing technical needs for foundation retrofit project such as vertical extension of apartment building. This paper focuses on the load distribution characteristics of existing and reinforcing piles when reinforcing pile is installed to the existing foundation. Allowable bearing load was initially applied on the foundation slab supported with four existing piles and then, one reinforcing pile was installed at the center of foundation slab and additional load was applied. The experimental results showed the Load Distribution Ratio (LDR) between existing and reinforcing piles converged after the applied load exceeded allowable bearing capacity of all piles. Laboratory tests were also performed for the cases of 60 %, 80 %, 100 % unloading level of allowable bearing load. After unloading step, one reinforcing pile was installed at the center of foundation slab and additional load was applied. The results showed that reloading load level at which LDR between existing and reinforcing piles converged decreased as the amount of unloading load increased.

A Study on Perimeter Load Transfer Fuctions of the Large Diameter Drilled Shafts Depending on Soil Types During the Static Pile Load Tests (정재하시험시 지반종류별 대구경 현장타설말뚝의 주면하중전이함수에 관한 연구)

  • Jung, Ho-Young;Hwang, Seong Chun;Choi, Yongkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.163-170
    • /
    • 2011
  • Perimeter load transfer functions were developed by an analysis of the static pile load test results of the 7 large diameter drilled shafts constructed in domestic areas. Using the pile axial load distributions obtained from the static pile load tests of large diameter drilled shafts, the unit skin frictions were analyzed and, based on unit skin friction test data, perimeter load transfer functions could be suggested. The load transfer distributions calculated by suggested functions and the load transfer functions obtained from the bi-directional pile load tests were compared. As a result, the 2 load transfer distributions were coincided, respectively.