DOI QR코드

DOI QR Code

말뚝-지반 상호작용을 고려한 수정된 하중전이함수법 제안

Load-Transfer Analysis by Considering Coupled Soil Resistance

  • 설훈일 (연세대학교 토목환경공학부) ;
  • 정상섬 (연세대학교 토목환경공학부) ;
  • 김영호 (연세대학교 토목환경공학부)
  • 투고 : 2008.07.09
  • 심사 : 2008.09.05
  • 발행 : 2008.11.29

초록

말뚝의 하중전이거동 및 변형특성 해석을 위해 하중전이함수법이 널리 사용된다. 본 연구에서는 말뚝-지반의 상효작용 즉, 지반의 연속성을 고려한 하중전이해석에 고찰하였으며, Mindlin 해를 이용하여 이를 고려함으로써 말뚝의 실제 거동에 보다 부합되도록 수정된 하중전이 해석방법을 제안하였다. 이를 통해 말뚝-지반 상호작용의 영향인자인 말뚝직경-지반계수의 비$(D/E_s)$과 주면마찰력-재하하중의 비$(R_s/Q)$를 고려할 수 있었다. 제안된 하중전이함수법의 타당성을 검증하기 위하여 현장재하시험 사례와의 비교분석 결과, 제안된 해석방법은 암반 근입 현장타설말뚝의 하중-침하 거동 및 하중전이특성을 적절히 예측함을 알 수 있었다.

The load distribution and deformation of pile subjected to axial loads are evaluated by a load-transfer method. The emphasis is on quantifying the effect of coupled soil resistance that is closely related to the ratio of pile diameter to soil modulus $(D/E_s)$ and the ratio of total shaft resistance against total applied load $(R_s/Q)$, in rock-socketed drilled shafts using the coupled load-transfer method. The proposed analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Through comparisons with field case studies, it was found that the proposed method in the present study estimated reasonable load transfer behavior of pile and coupling effects due to the transfer of shaft shear loading, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.

키워드

참고문헌

  1. 권오성(2004) Effect of rock mass weathering on resistant Behavior of drilled Shaft socketed into weathered rock. 박사학위논문, 서울대학교.
  2. 설훈일(2007) Load transfer analysis of rock-socketed drilled shafts by considering coupled soil resistance. 박사학위논문, 연세대학교.
  3. 설훈일, 정상섬(2007) Shaft resistance characteristics of rock-socketed drilled shafts based on fled pile loading tests. 한국지반공학회논문집(영어논문), 한국지반공학회, 제23 권, 제9호, pp. 51-63.
  4. 조성한(1997) 풍화암에 근입된 현장타설말뚝의 하중전이에 관한연구. 박사학위논문, 연세대학교.
  5. Coyle, H.M. and Reese, L.C. (1966) Load transfer for axially loaded piles in clay. J. Soil Mech. and Found. Div., ASCE, Vol. 92, No. 2, pp. 1-26.
  6. International Society for Rock Mechanics (1981) Suggested Mehtods for the Quantitative Description of Discontinuities in Rock Masses, Pergamon Press, UK.
  7. Kim, S.I., Jeong, S.S., Cho, S.H., and Park, I.J. (1999) Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks. J. of Geotech. Geoenv. Eng., ASCE, Vol. 125, No. 11, pp. 999-1010. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(999)
  8. Mattes, N.S. and Poulos, H.G. (1969) Settlement of single compressible pile. J. Soil Mech. and Found. Div., ASCE, Vol. 95, No. 1, pp. 189-207.
  9. Seed, H.B. and Reese, L.D. (1957) The Action of Soft Clay Along Friction Piles. Transactions, ASCE, Vol. 122, pp. 731-753.
  10. Seol, H.I., Jeong, S.S., and Kim, Y.M. (2008a) Load Transfer Analysis of Rock-Socketed Drilled Shafts by Coupled Soil Resistance. Comp. and Geotech., Elsevier, doi:10.1016/j.compgeo
  11. Seol, H.I, Jeong, S.S., Cho, C.H., and You, K.H. (2008b) Shear Load Transfer for Rock-Socketed Drilled Shafts based on Borehole Roughness and Geological Strength Index (GSI). Int. J. Rock Mech. and Min. Sci., Vol. 45, pp. 848-861 https://doi.org/10.1016/j.ijrmms.2007.09.008
  12. Vesic, A.S. (1977) Design of pile foundations. National Cooperative Highway Research Program Synthesis of Practice No. 42, Transportation Research Borard, Washington, D.C.
  13. Zhan, C. and Yin, J. (2000) Field static load tests on drilled shaft founded on or socketed into rock. Canadian Geotech. J., Vol. 37, pp. 1283-1294. https://doi.org/10.1139/cgj-37-6-1283