• Title/Summary/Keyword: 하부 하양층군

Search Result 13, Processing Time 0.027 seconds

$^{40}Ar^{/39}Ar$ Age of the Volcanic Pebbles Within the Silla Conglomerate and the Deposition Timing of the Hayang Group (백악기 신라역암 내 화산암력의 $^{40}Ar^{/39}Ar$ 연대 및 하양층군의 퇴적시기에 대한 고찰)

  • Kim Chan-Soo;Park Kye-Hun;Paik In-Sung
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • Hornblende $^{40}Ar/^{39}Ar$ age of $113.4{\pm}2.4(2{\sigma})$ Ma was determined from the volcanic pebble of the Silla Conglomerate which belongs to the Hayang Group of the Cretaceous Gyeongsang Supergroup. This age corresponds to the top of Aptian. Based on the reported age information, onset and duration of deposition of the constituting formations of the Hayang Group are constrained as follows; deposition of the Jindong Formation started from ca. 96~97 Ma and lasted for about 15 Ma. Therefore, Jindong Formation was deposited since Cenomanian to Santonian and it is likely to be extended to the early Campanian. We propose 81~80 Ma, which is in early Campanian, as the boundary between Hayang and Yucheon Groups. We suggest that the Silla Conglomerate was deposited during the early Albian and the Haman Formation was deposited during the rest of the Albian and also during the Cenomanian. The Chilgok Formation seems to be deposited during the late Aptian.

Controls on Diagenetic Mineralogy of Sandstones and Mudrocks from the Lower Hayang Group (Cretaceous) in the Daegu Area, Korea (대구 부근 하부 하양층군(백악기) 사암과 이암의 속성 광물과 속성 작용의 규제 요인)

  • Shin, Young-Sik;Choo, Chang-Oh;Lee, Yoon-Jong;Lee, Yong-Tae;Koh, In-Seok
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.575-586
    • /
    • 2002
  • Authigenic minerals found in sandstones and mudrocks of the Lower Hayang Group (Cretaceous) in the central part of the Kyungsang Basin are carbonate minerals (calcite, dolomite), clay minerals (illite, chlorite, C/S, I/S and kaolinite), albite, quartz and hematite. Characteristic diagenetic mineral assemblages are as follows: albite-chlorite (including C/S)-hematite in the Chilgog Formation, albite-illite-calcite in the Silla Conglomerate, illite-chlorite-hematite in the Haman Formation and albite-chlorite-dolomite in the Panyawol Formation, respectively. Among clay minerals reflecting the physical and chemical change of the diagenetic process, illite, the dominant clay mineral, occurs in every formation in the study area. Chlorite occurs mainly in green or gray sandstones and mudrocks, or in sandstones and mudrocks of the Chilogok Formation which contains a high content of volcanic materials. Based on the mineral assemblage, diagenetic minerals are strongly related with source rocks. Judging from the illite crystallinity, diagenesis of sandstones and mudrocks in the study area reached the late diagenetic stage or low grade metamorphisim. The diagenetic process was much influenced by intrusion of the Bulguksa granite, content of organic materials, grain size, and depositional environment rather than burial depth.

Comparative Sedimentology for the Lacustrine Deposits of the Upper Gyeongsang Supergroup in the Southeastern Gyeongsang Basin, Korea (경상분지 동남부의 상부 경상누층군에 발달한 호성퇴적층에 대한 비교퇴적학적 연구)

  • Paik, In-Sung;Kim, Hyun-Joo;Lee, Joon-Dong;Kim, In-Soo;Kim, Jin-Seop;Moon, Byoung-Chan
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.423-436
    • /
    • 2000
  • The lithofacies, biofacies, and paleosol development of the Jindong Formation, the Geoncheonri Formation, and the lacustrine deposits of Mt. Hwangryeong at Pusan, which occur in the southeastern part of the Gyeongsang Basin, were analyzed in comparative sedimentology and in stratigraphy. The common features of these lacustrine deposits are: 1) clastic deposits are prevailing, 2) deltaic deposits are not associated, 3) mudflat deposits are common, and 4) stromatolites are absent. The distinct differences among these deposits are: 1) in the Jindong Formation, the mudflat deposits are predominant, pedogenic calcretes are commonly present, and dinosaur tracks frequently occur, compared with other two lacustrine deposits, and 2) in the Geoncheonri Formation, invertebrate fossils are relatively common and storm deposits are not recognized, compared with other deposits, and 3) evaporite mineral casts and tuffaceous turbidite deposits are common in the Mt. Hwangryeong lacustrine deposits. In stratigraphy, the Geoncheonri Formation is correlated with the lower part of the Jindong Formation, and the Mt. Hwangryeong lacutsrine deposits are deemed to overlie the Jindong Formation. On the basis of comparative sedimentology and stratigraphic relationship among these lacustrine deposits, general paleoenvironements of the southeastern part of the Gyeongsang Basin from the late Hayang time to the early Yucheon time are interpreted as follows. During the late Hayang time, tectonic and volcanic activities were generally inacitive in the Gyeongsang Basin, and lacustrine environments expanded since the paleoclimatic condition became less arid compared with the middle Hayang time. In general, however, paleoclimate during the late Hayang time was still arid, and wetting and drying periods were alternated. The occasional occurrences of severe droughts were also characteristic of the late Hayang time. Mudflats existed in wide area in the southeastern part of the Gyeongsang Basin during the late Hayang time, and sedimentation rate was accordingly low. The sedimentation rate became relatively high during the latest Hayang time and the early Yucheon time since tectonic and volcanic activities had been active. Generally arid climate continued for the early Yucheon time, enough for evaporite minerals to precipate occasionally.

  • PDF

Upper Mesozoic Stratifraphic synthesis of Korean Peninsula (한반도 후기중생대층 층서종합)

  • Ki-Hong Chang
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.353-363
    • /
    • 1999
  • The Cretaceous and the Upper Jurassic strata of the Korean Peninsula, entirely of continental facies, form a sedimentary mega-unit subdivided into three unconformity-bounded units. The lower, Upper Jurassic-early Lower Cretaceous unit (Jasong Synthem) occurs profusely in North Korea and is characterized by volcanic rocks of intermediate to acidic, calc-alkaline to alkaline compositions; but strata of this unit is very rare in South Korea. The middle, Hauterivian-Lower Albian unit occurs commonly in the Korean Peninsula, but some alkalinesubalkaline basalt and andesite occur only in South Korea. A recently obtained U-Pb isochron age about 113.6 Ma (Chang et at, 1998) from the zircon grains of the Kusandong Tuff in the uppermost part of the Haman Formation has thrown much light on the age of this unit. The stratotype of this Hauterivian-L. Albian unit is the Sindong and Hayang Groups of the Kyongsang Basin, where the unit is about twice thick and has more conglomerates than in sedimentary basins in North Korea. The unit shows various sedimentary cycles in different basins showing that the cyclicity is controlled by local crustal motion. The upper, Upper Albian-Upper Cretaceous unit is abundant in South Korea with prolific volcanic rocks which are intermediate to acidic and notably calc-alkaline. In North Korea, however, this unit occurs in only one locality without volcanic rocks and is not voluminous. The distribution of these three unconformity-bounded units shows a stepwise younging toward the Pacific Ocean: the lower unit occurs mainly in N Korea, the middle unit occurs in both N and S Korea, and the upper unit occurs mainly in the southern part of S Korea. The Cretaceous sedimentary basins of S Korea were genetically controlled by paralleling sinistral strike-slip faults parallel to the Pacific margin.

  • PDF

Paleocurrent Analysis of the Cretaceous Hayang Group in the Northeastern Part of Euiseong Subbasin, Southeast Korea (한국 의성소분지 북동부 백악기 하양층군의 고수류)

  • Koh In Seok;Lee Yong Tae;Shin Young Sik
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.12-19
    • /
    • 1996
  • Directional sedimentary structures (channel structure, cross stratification, and current ripple) were observed in fine to gravelly ye.y coarse sandstones of the Cretaceous Mayans Group (lljig, Hupyeongdong, and Jeomgok formations) in the northeastern part of Euiseong subbasin of Kyongsang basin, Southeast Korea. Large and small scale channel structures are common in all formations. Trough cross-stratification and channel structure frequently occur in the lljig formation (proximal fluvial deposit), whereas planar cross- stratification, cross lamination, and current ripple occur abundantly in the Hupyeongdong and Jeomgok formations (distal braided fluvial to marginal lacustrine deposits). The paleocurrent directions inferred from a statistical analysis of total 43 directional sedimentary structures show a mean azimuth of $290^{\circ}C$ with a standard deviation of $\pm68$. It suggests that the main flow of the paleocurrents moved toward the WNW direction and the source area of the sediments would be located somewhere in the ESE direction beyond the study area.

  • PDF

Displacement Analysis of an Excavation Wall using Inclinometer Instrumentation Data, Banyawol Formation, Western Daegu (경사계를 이용한 대구 서부지역 반야월층 굴착 지반의 변위 분석)

  • Ihm, Myeong-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • To analyze lateral displacement of excavation walls exposed during the construction of Subway Line 1 in the Daegu region, inclinometer measurement data for sites D4, D5, and Y6 are investigated from the perspective of engineering geology. The study area, in the Banyawol Formation, Hayang Group, Gyeongsang Supergroup, is in the lower part of bedrock of andesitic volcanics, calcareous shale, sandstone, hornfels, and felsite dykes that are unconformably overlain by soil. The rock mass around the D4 site is classified as RMR-V grade and the maximum lateral displacement of 101.39 mm, toward N34W, was measured at a bedding-parallel fault, at a depth of 12 m. The rock mass around the D5 site is classified as RMR-IV grade and the maximum lateral displacement of 55.17 mm, toward the south, was measured at a lithologic contact between shale and felsite, at a depth of 14 m. The rock mass around the Y6 site is classified as RMR-III grade and the maximum lateral displacement of 12.65 mm, toward S52W, was measured at an unconformity between the soil and underlying bedrocks, at a depth of 7 m. The directions of lateral displacement in the excavation walls are vector sums of the directions perpendicular to the excavation wall and horizontally parallel to the excavation wall. Lateral displacement graphs according to depth in the soil profile show curvilinear trajectories, whereas those in bedrock show straight and rapid-displacement trajectories.

Palaeomgnetic Study on the Cretaceous Rocks in the Konchonri Area of the Northern Milyang Subbasin, Korea (밀양소분지 건천리 일원의 백악기 암석에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo;Yun, Sung-Hyo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • A palaeomagnetic study was carried out on Early through Late Cretaceous sandstones and volcanic sequences (the Songnaedong Formation, Chaeyaksan Volcanics, Konchonri Formation, and Jusasan Andesite it ascending order) from Konchonri area in the northern Milyang subbasin of the Kyongsang Basin, Korea. A high-temperature stable remanence with direction of $d=22.9^{\circ},\;i=59.1^{\circ}\;({\alpha}_{95}=3.0^{\circ})$ has been isolated and a corresponding pole was $71.6^{\circ}N,\;199.6^{\circ}E\;(A_{95}=4.2^{\circ})$. The characteristic high-temperature component resides in both hematite and magnetite. The primary nature of this remanence is confirmed from positive fold and reversals tests, The palaeopole is consistent with those of the Hayang Group in other parts of the Kyongsang Basin. A comparison of the palaeomagnetic pole position from the studied area with the contemporary pole from China west of the Tan-Lu fault presents that Konchonri area has experienced little latitudinal displacement nor vertical-axis block rotation relative to the Chinese blocks since the Cretaceous. Based on the formations indicating dual polarity, radiometric and paleontologic data, the magnetostratigraphic age of the studied sequence from the Songnedong Formation to the Jusasan Andesite ranges from upper Albian to lower Campanian reverse polarity chronozone. On the other hand, volcanic samples of the Chaeyaksan Volcanics and the Jusasan Andesite showed the scattered directions considered in group, even though individual sample showed a stable remanent magnetization in response to thermal demagnetization. It indicates that they have been reworked after acquisition of the stable remanent magnetization.

  • PDF

천연기념물 제395호 진주 가진리 새발자국과 공룡발자국 화석산지의 새로운 해석

  • Im, Jong-Deok;Gong, Dal-Yong;Kim, Gyeong-Su;Kim, Tae-Hyeong
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.21-21
    • /
    • 2010
  • 천연기념물 제395호 진주 가진리 새발자국과 공룡발자국 화석산지는 1997년 5월 20일, 경남과학교육원 신축 공사장에서 당시 경남과학고등학교 교사로 근무하던 백광석(현재 서상중고등학교 교장)에 의해 최초로 발견되어, 수 백 점의 새발자국 화석과 공룡발자국 화석들이 학계에 알려지게 되었다. 지금까지도 세계 여러나라의 중생대 새 발자국 중에서 가장 밀도가 높은 화석산지로 손꼽히고 있으며 많은 학자들의 관심을 받고 있다. 이곳의 지질은 백악기 하양층군 함안층 하부의 적색 이암 또는 셰일과 사암의 호층으로 구성되어 있고, 새발자국 화석들은 적색 이암에서 발견된다. 현재, 이 화석산지는 경남과학교육원 건물 내부에 위치하고 있으며, '화석문화재전시관'이라는 명칭으로 보호 및 관리되고 있기때문에 자연재해와 풍화에 의한 침식을 1차적으로 막고 있다. 이 화석산지는 우리나라에서는 천연기념물 제394호 해남 우항리 화석산지와 함께 현장을 그대로 보존하면서 화석의 보존과 관리를 동시에 할 수 있는 건물을 지어 자연사교육을 진행할 수 있는 곳으로 많은 학생들을 대상으로 우리나라의 소중한 화석을 직접 관찰하고 학습하는 체험교육이 가능하다. 원격조종카메라 시스템을 활용하여 관람객이 직접 자신이 원하는 발자국 화석을 세부적으로 관찰할 수 있게 장치한 interactive system은 과학교육 효과를 증진시킨다. 선행 연구에 의하면, 본 화석산지에서 익룡의 발자국 화석(KS 071)도 공룡이나 새발자국과 같은 층리면에서 서로 겹쳐서 나타난다고 보고되었으나, 본 연구에 의해 다시 조사된 결과 전형적인 익룡의 발자국 화석에서 보이는 분명한 특징들을 발견할 수 없었다. 물갈퀴를 가진 새발자국 가운데에서 Uhangrichnus chuni 와 Jindongornipes kimi 로 기재된 표본들에 대하여서도 새롭게 분석하였다. Uhangrichnus chuni로 기재된 많은 표본들은 II-IV번 발가락 사이의 각, 물갈퀴의 형태, 뚜렷한 hallux 등의 형태적 특징을 근거로 할 때, 대부분이 Ignotorinis yangi로 판단된다. Jindongornipes kimi로 기재된 표본들은 이미 기재된 표본보다 크기가 적어도 10%-25%가 작으며, II-IV번 발가락 사이의 각에서 차이를 보인다.

  • PDF

Role of the Cheongryangsan Conglomerate and the Osipbong Basalt in Classifying Stratigraphy of the Hayang Group, Yeongyang Subbasin (영양소분지 하양층군의 층서분류에 있어서 청량산역암과 오십봉현무암의 역할)

  • Hwang, Sang-Koo;Woo, Byung-Gul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.181-194
    • /
    • 2009
  • The Cheongryangsan Formation was reported to stratigraphically overlie the Gasongdong Formation and underlie the Dogyedong Formation in the northern part of the Yeongyang subbasin, and be divided into the lower Cheongryangsan Member and the Osipbong Member. But the members have more widely called as the Cheongryangsan Conglomerate and the Osipbong Basalt, because the latter have initially meant that thin basalt flows several times intercalate sedimentary rocks in the northern part but later must consider that they have a very dominant volume in the eastern one. Both formations are based on classifying the stratigraphy and play a role of an excellent key bed for stratigraphic correlation between local spaces in the subbasin dominant absolutely for reddish beds. Both formations play a role of excellent key bed in the northern and northwestern areas of the subbasin; the Osipbong Basalt, the midwestern, eastern and southern ones; the Cheongryangsan Conglomerate, the southeastern one.

Palaeomagnetism of the Cretaceous Yuchon Group in Kosong Area, Southern Kyongsang Basin (경상분지 남단 고성지역의 백악기 유천층군에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.663-674
    • /
    • 2000
  • A total of 165 independently oriented core samples were collected from 19 Cretaceous Yuchon Group sites in Kosong area, the southernmost part of the Miryang subbasin of the Kyongsang Basin in southern Korea. Stepwise AF and thermal cleaning revealed antipodal ChRM from 95 samples from 14 sites. Mean ChRM direction is d=26.0$^{\circ}$, i=49.4$^{\circ}$ (${\alpha}_{95}$=8.2$^{\circ}$, k=24.5, n= 14) before bedding correction and d=28.1$^{\circ}$, i=54.2$^{\circ}$ (${\alpha}_{95}$=4.8$^{\circ}$, k=70.6, n= 14) after bedding correction. A 2.88-fold increase of the precession parameter k by bedding correction indicates pre-folding age of the ChRM with 99% confidence level. Palaeomagnetic pole position calculated from the mean ChRM is 67.0$^{\circ}$N, 210.6$^{\circ}$E (dp=4.7$^{\circ}$, dm=6.7$^{\circ}$), which is significantly different neither from the poles of other part of the Kyongsang Basin nor those of Eurasia including SCB and NCB. This suggests stable relative position of the study area with regard to other parts of the Kyongsang Basin as well as to Eurasia continent since Cretaceous. Three ploarity reversals in the Kosong Formation in addition to the coexistence of normal and reversed polarities in the overlying Andesites and Welded Tuff suggest, in reference to the worldwide geomagnetic polarity time scale, an Albian to Maastrichtian (polarity chron 32r-31r) age of the Yuchon Group of the study area. An alleged hypothesis of stratigraphical correspondence between the Kosong Formation in the study area and the Tadaepo Formation in Pusan area is, however, not tenable: Not only because the latter shows a short reverse polarity only in its lowest part of the sequence but also because the Andesites overlying it is wholly normally magnetized, in contrast to the frequent reverals in the case of both the Kosong Formation and Andesites above it.

  • PDF