Controls on Diagenetic Mineralogy of Sandstones and Mudrocks from the Lower Hayang Group (Cretaceous) in the Daegu Area, Korea

대구 부근 하부 하양층군(백악기) 사암과 이암의 속성 광물과 속성 작용의 규제 요인

  • 신영식 (대구가톨릭대학교 사범대학 부속 무학고등학교) ;
  • 추창오 (경북대학교 지질학과) ;
  • 이윤종 (경북대학교 지구과학 교육과) ;
  • 이용태 (동북고등학교) ;
  • 고인석 (경북대학교 지질학과)
  • Published : 2002.10.31

Abstract

Authigenic minerals found in sandstones and mudrocks of the Lower Hayang Group (Cretaceous) in the central part of the Kyungsang Basin are carbonate minerals (calcite, dolomite), clay minerals (illite, chlorite, C/S, I/S and kaolinite), albite, quartz and hematite. Characteristic diagenetic mineral assemblages are as follows: albite-chlorite (including C/S)-hematite in the Chilgog Formation, albite-illite-calcite in the Silla Conglomerate, illite-chlorite-hematite in the Haman Formation and albite-chlorite-dolomite in the Panyawol Formation, respectively. Among clay minerals reflecting the physical and chemical change of the diagenetic process, illite, the dominant clay mineral, occurs in every formation in the study area. Chlorite occurs mainly in green or gray sandstones and mudrocks, or in sandstones and mudrocks of the Chilogok Formation which contains a high content of volcanic materials. Based on the mineral assemblage, diagenetic minerals are strongly related with source rocks. Judging from the illite crystallinity, diagenesis of sandstones and mudrocks in the study area reached the late diagenetic stage or low grade metamorphisim. The diagenetic process was much influenced by intrusion of the Bulguksa granite, content of organic materials, grain size, and depositional environment rather than burial depth.

경상분지 중앙부에 분포하는 백악기 하부 하양층군의 사암과 이암에서 산출되는 속성광물은 탄산염 광물(방해석, 백운석), 점토 광물(I/S, C/S, 일라이트, 녹니석 및 캐올리나이트), 알바이트, 석영 및 적철석이 대부분을 이루고 있다. 각 층별 특징적인 속성 광물상으로는, 칠곡층에서는 알바이트-녹니석(C/S포함)-적철석이, 신라역암은 알바이트-일라이트-방해석이, 함안층에서는 일라이트-녹니석-적철석이, 반야월층에서는 알바이트-녹니석-백운석이 산출된다. 속성 작용 과정의 물리, 화학적 환경 변화를 지시하는 점토 광물로는 일라이트가 전층군을 통하여 보편적으로 산출되나, 녹니석(C/S포함)은 회색 또는 녹색암이나 화산기원 물질의 함량이 높은 칠곡층 사암과 이암에서 주로 나타난다. 이러한 속성 광물상에 근거할 때, 속성 광물의 생성은 일차적으로 기원암과 밀접히 연관된 것으로 판단된다. 또한, 일라이트 결정도를 기준으로 이 지역의 사암과 이암은 후기 속성 작용 단계 내지 저변성 단계에 해당되며, 속성 작용은 매몰 심도 보다 백악기 화강암체의 관입, 유기물의 함량과 입자의 크기 및 퇴적환경의 영향을 크게 받은 것으로 보인다.

Keywords

References

  1. 고인석, 1986, 낙동층군의 기원암에 관한 연구,지질학회지, 22, 233-256
  2. 고인석, 이용태, 김종근, 1994, 경상분지 백악기 상부 경상누층군 사암의 퇴적변질. 한 국석유지질학회지, 2(2),19-31
  3. 노진환, 박현수, 1990, 고령지역 경상누층군 사암의 속성작용 및 속성광물. 지질학회지 . 26, 371-392
  4. 노진환, 최우일, 2001, 경북 군위지역 신동층군 사암의 속성광물상 및 속성작용.지질학회 지, 37, 323-344
  5. 서승조, 1985, 경상분지 중앙부 하부 백악계의 지질과 고생물(윤조화석). 경북대학교 대학원 이학박사학위논문, 177 p
  6. 신영식, 이용태, 이윤종, 고인석, 2001, 대구지역 하부하양층군(백악기)의 사암과 이암에 관한 암석화학. 지질학회지, 37, 153-168
  7. 엄상호, 최현일, 손진담, 오재호, 곽영훈, 신성천, 윤현수, 1983, 경상분지의 경상누층군에 대한 지질 및 지화학적 연구. 한국동력자원연구소, KIER-Bulletin-36, 124 p
  8. 장기홍, 박순옥, 1997, 경상분지 중앙부의 구조발달사와 화산활동사, 자원환경지질, 30, 143-151
  9. Aagaard, P. and Helgeson, H. C., 1983, Activity/composition relations among silicates and aquous solution: n. Chemical and thermodynamic consequences of ideal mixing of atoms homological sites in montmorillonites, illites, and mixed-layer clays: day and day Minerals, 31, 207-217
  10. $Bj\phirlykke,$K., Aagaard, R, Dypvik, H., Hastings, D. S. and Haiper, A. S., 1986, Diagenesis and reservoir Prop-erties of Jurassic sandstones from the Haltenbanken area, offshore mid Norway. In Spencer, M. (ed.), Petro-leum Geology of the Northem European Margin. Nor-wegian Petroleum Society, Graham and Trotman, London, 285-292
  11. $Bj\phirlykke,$ K. and Aagaard, P., 1992, Clay minerals in North Sea Sandstones. In Houseknecht, D. W and Pitt-man, E. D. (eds.), Origin, Diagenesis, and Petrophysics of Clay minerals in Sandstones, Society of Economic Paleontologists and Mineralogists Special Publication, 47, 65-80
  12. Boles, J. R. and Franks, S. G., 1979, Clay diagenesis in Wilcix sandstones of southwest Texas. Joumal of Sedi-mentaiy Petrology, 49, 55-70
  13. Chang, K. H., 1975, Cretaceous stratigraphy of Southeast Korea. Joumal of the Geological Society of Korea, 11(1), 1-23
  14. Chang, K. H., 1977, Late Mesozoic stratigraphy, Sedimen-tation and tectonics of southeastern Korea. Joumal of the Geological Society of Korea. 13, 76-90
  15. Chang, K. H., 1988, Cretaceous Stratigraphy and Paleocur-rent Analysis of Kyongsang Basin, Korea. Joumal of the Geological Society of Korea, 24(3), 194-205
  16. Choi H. I., 1985, Sedimentology and Its Implications for Stratigraphic ClassiScations of the Cretaceous Gyeong-sang Basin. Joumal of the Geological Society of Korea. 21(1), 26-37
  17. Choo, C. O., Shin, Y. S. and Koh, I. S., 2002, Minera1ogi-cal evidence for red coloration of sandstones at the Chilgok Formation of the Cretaceous Hayang Group, Southeastern Korea. Geosciences Joumal, 6(2), 141-148 https://doi.org/10.1007/BF03028285
  18. Dunoyer de Segonzag, G., 1970, The transfonnation of clay minerals during diagenesis and lower-grade meta-morphism: A review. Sedimentology, 15, 281-346 https://doi.org/10.1111/j.1365-3091.1970.tb02190.x
  19. Eberl, D. D., 1993, Three zones for illite formation during burial diagenesis and metamorphism. days and day Minerals, 41, 26-37
  20. , 1989, Fonnation of diagenetic illite in sandstones of the Gam Formation. Halten banken area, mid-Norwegian continental shelf. Claay Minerals, 24, 233-253 https://doi.org/10.1180/claymin.1989.024.2.09
  21. Eslinger, E. and Pevear, D., 1988, Clay minerals and Sand-stone diagenesis, In Eslinger, E. and Pevear, D. (eds.), Clay minerals for Petroleum Geologist and Engineers, SEPM Short Course, 22, 223-245
  22. Frey, M., 1987, Very low-grade metamorphism of Sedimen-tary rocks, In Frey. M. (ed.), Low Temperature Meta-moiphism, Blackie, Glasgow, 9-58
  23. Hillier S., Fallick A. E. and Matter A., 1996, Oiigin of pore-lining chlorite in the aeolian Rotliegend of North-ern Germany. Clay Minemls, 31, 153-171 https://doi.org/10.1180/claymin.1996.031.2.02
  24. Hong, Y. K., 1983, Petrology and Geochemistry of the Cretaceous Palgongsan Granite, Southem Korea. Jour-nal of Korea Institute Mining Geology. 16(2), 83-109
  25. Hower, J., Eslinger, E., Hower, M. E. and Perry, E. A., 1976, Mechanism of burial metamorphism of argilla-ceous sediments- 1. Mineralogical and chemical evi-dence. Geological Society American Bulletin, 87, 725-737 https://doi.org/10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2
  26. Hower, J., 1981, Shale diagenesis. In Longstaffe, F. G. (ed.), days and the Resource Geologists, Short Course Handbook, Mineralogical Association of Canada, 39-59
  27. Huang, W. L., 1992, nIitic-clay formation during expeii-mentary diagenesis of arkoses. In Houseknecht, D. W. and Pittman, E. D. (eds.), Origin, Diagenesis, and Petrophysics of Clay minerals in Sandstones, Society of Economic Paleontologists and Mineralogists Special Publication, 47, 49-63
  28. Kisch, H. J., 1987, Correlation between indicators of very low-grade metamorphism, In Frey, M. (ed.), Low Tem-perature Metamorphism, Blackie, Glosgow, 227-300
  29. $K\ddot{u}bler,$ B., 1967, La cnstallinite de I'illite et les zones touta fait superieures du metamorphisme. In Etsges Tec-toniques, Neuchatel University, Switzerland, 105-121
  30. $K\ddot{u}bler,$ B., 1968, Evaluation quantitative de metamor-phisme par la cristallnite de I'illite. Bulletin Centre Recherche Pau-SNPA, 2, 385-397
  31. Lee J. I., and Lee Y. L, 1998, Feldspar albitization in Cre-taceous non-marine mud-rocks, Gyongsang Basin, Korea, Sedimentology, 45, 745-754 https://doi.org/10.1046/j.1365-3091.1998.00173.x
  32. Lee J. I., and Lee Y. I., 2001, K bIer illite 'Crystallimty' index of the Cretaceous Gyeongsang Basin, Korea: Implications for basin evolution, day and day Miner-als, 49, 36-44
  33. Li, G., Peacor, D. R., and Coombs, D. S., 1997, Transfor-mation of smectite to illite in bentonite and associated sediments from Kaka Point, New Zealand: Contrast in rate and mechanism, days and day Minerals, 45, 54-61
  34. Sass, N. C., Rosenberg, P. E. and Kittrick, J. A., 1987, The stability of illite/smectite during diagenesis: an experimental study. Geochimica et Cosmochimica Acta, 51, 2103-2115 https://doi.org/10.1016/0016-7037(87)90259-6
  35. Small, J. S., 1994, Huid composition, mineralogy and mor-phological changes associated with the smectite-to-illite reaction: An experimental investigation of the effect of organic acid anions. Clay Minerals, 29, 539-554 https://doi.org/10.1180/claymin.1994.029.4.11
  36. Tateiwa, I., 1929, Geological Atlas of Korea, Waegwan-Taegu-Yongchon Sheets. Geological Survey of Korea
  37. Uysal, I. T, Golding, S. D. and Audsley R, 2000, Clay-mineral authigenesis in late Pennin coal measures,Bowen Basin, Queensland, Australia. day and Clay Minenls, 48, 351-365