• Title/Summary/Keyword: 하드웨어 연계 시뮬레이션

Search Result 39, Processing Time 0.024 seconds

Performance Analysis of Grid Connected Back-to-Back Converter Composed of Multi-pulse Converter and PWM Converter (다중펄스 컨버터와 PWM 컨버터로 구성된 Back-to-Back 컨버터의 계통연계 성능 분석)

  • Jeong, Jong-Kyou;Shim, Myong-Bo;Lee, Hye-Yeon;Han, Byung-Moon;Han, Young-Seong;Chung, Chung-Choo;Chang, Byung-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.451-459
    • /
    • 2010
  • This paper describes the performance comparison results for a hybrid back-to-back converter, which is composed of a 3-level 24-pulse converter and a 3-level PWM converter, in order to interconnect a large scale wind farm with the power grid. Also it describes the performance comparison results when the 24-pulse converter operates in only firing-angle control, and both firing-angle and the zero-voltage control. For the purpose of systematic performance comparison, computer simulations with PSCAD/EMTDC software were carried out, and based on simulation results a scaled hardware model with 2 kVA rating was built and tested.

Development of Hardware Simulator for DFIG Wind Power System Composed of Anemometer and Motor-Generator Set (풍속계와 Motor-Generator 세트를 이용한 DFIG 풍력발전시스템 하드웨어 시뮬레이터 개발)

  • Oh, Seung-Jin;Cha, Min-Young;Kim, Jong-Won;Jeong, Jong-Kyou;Han, Byung-Moon;Chang, Byung-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2011
  • This paper describe development of a hardware simulator for the DFIG wind power system, which was designed considering wind characteristic, blade characteristic, and blade inertia compensation. The simulator consists of three major parts, such as wind turbine model using induction motor, doubly-fed induction generator, converter-inverter set. and control system. The turbine simulator generates torque and speed signals for a specific wind turbine with respect to the given wind speed which is detected by Anemometer. This torque and speed signals are scaled down to fit the input of 3.5kW DFIG. The MSC operates to track the maximum power point, and the GSC controls the active and reactive power supplied to the grid. The operational feasibility was verified through computer simulations with PSCAD/EMTDC. And the implementation feasibility was confirmed through experimental works with a hardware set-up.

Dynamic Interaction Analysis of Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator (컴퓨터 시뮬레이션과 실규모 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 응동특성 분석)

  • Yun, Dong-Jin;Han, Byung-Moon;Choy, Young-Do;Jeon, Young-Soo;Jeong, Byoung-Chang;Chung, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1047_1048
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

  • PDF

Performance Comparison Analysis for Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator (컴퓨터시뮬레이션과 실용량 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 성능비교분석)

  • Yun, Dong-Jin;Oh, Seung-Jin;Han, Byung-Moon;Jeong, Byoung-Chang;Jung, Yong-Ho;Choy, Young-Do;Jeon, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.263-269
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

A Study of Optimal Modem Algorithm According to Various Channel Fluctuations (디지털 가전채널 변동특성을 반영한 최적 변복조 시스템에 관한 연구)

  • Cha, Jae-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.20-27
    • /
    • 2006
  • Power line for digital home appliances has own property that transmitting power connected to loads. Especially, power line communication(PLC) for the home network which has characteristics of load fluctuation makes variable noise characteristics. It becomes serious problems to maintain efficient communication performance. Thus, in this paper, we present an optimal modulation and demodulation method through mathematical analysis of each measured load fluctuation based on PLC for home appliances. To analyze and compare various modem methods presented in this paper, we analyzed them normally via computer simulation under various noise channel environments according to various load fluctuations. In addition, we certified its availability through hardware implementation.

International Activities for the Development of a Full Engine Simulation Program (엔진 시뮬레이션 프로그램 개발의 국제 동향)

  • Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Ahn, Iee-Ki;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.250-257
    • /
    • 2007
  • The development of aircraft engine requires a lot of time and cost to estimate system attributes such as performance, reliability, stability and life. A virtual engine test based on "Numerical test cell" can extremely reduce the time and cost for the development of a hardware by coupling multidisciplinary analyses. This paper presents the development activities of full engine simulation programs in U.S.A. and Europe. NASA Glenn research center of U.S.A. leads the development efforts of NPSS(Numerical Propulsion System Simulation) by assembling the existing codes and improving their functions. VIVACE (Value Improvement through a Virtual Aeronautical Collaborative Enterprise), a consortium of universities, research centers and companies in Europe is developing the PROOSIS(PRopulsion Object Oriented SImulation Software) by integrating the various programs of the institutes. The capability for the domestic development is also estimated by surveying the current status.

  • PDF

Development of PV-Power-Hardware-In-Loop Simulator with Realtime to Improve the Performance of the Distributed PV Inverter (분산전원형 PV 인버터 성능 개선을 위한 실시간 처리기반의 PV-Power-Hardware-In-Loop 시뮬레이터 개발)

  • Kim, Dae-Jin;Kim, Byungki;Ryu, Kung-Sang;Lee, Gwang-Se;Jang, Moon-Seok;Ko, Hee-Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.3
    • /
    • pp.47-59
    • /
    • 2017
  • As the global warming threats to humanity, renewable energy is considered the key solution to overcome the climate change. In this circumstance, distributed PV systems are being expanded significantly its market share in the renewable energy industry. The performance of inverter is the most important component at PV system and numerous researches are focusing on it. In order to improve the inverter, PV simulator is an essential device to experiment under various load and conditions. This paper proposes the PV Power-Hardware-In-Loop simulator (PHILS) with real-time processing converted electrical and mathematical models to improve computation speed. Single-diode PV model is used in MATLAB/SIMULINK for the PV PHILS to boosting computation speed and dynamic model accuracy. In addition, control algorithms for sub-components such as DC amplifier, measurement device and several interface functions are implemented in the model. The proposed PV PHILS is validated by means of experiments with commercial PV module parameters.

Supercapacitor Energy Storage System for the Compensation of Fuel Cell Response Characteristics (연료전지 응답특성 보상용 슈퍼커패시터 에너지 저장 시스템)

  • Song, Woong-Hyub;Jung, Jae-Hun;Kim, Jin-Young;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.440-447
    • /
    • 2011
  • This paper deals with supercapacitor energy storage system for the compensation of the slow response characteristics of a fuel cell generation system for grid connection. A bidirectional dc/dc converter is used for the charging and discharging of the supercapacitor. The conventional converters use additional clamping circuit, etc. to reduce a voltage spike at the instant of switching and to provide wide range of soft switching. The proposed method provides simplified hardware implementation without any clamping circuit, and soft switching condition for both charging and discharging mode with proper switching patterns. The usefulness of the proposed scheme is verified through simulation and experimental results with 1 kW system.

A study on the Operation Algorithm for Bi-directional Sectonalizer in Distribution System Interconnected with Distributed Generations (분산전원이 연계된 배전계통의 양방향 구간개폐기의 동작 알고리즘에 관한 연구)

  • Yoon, Gi-Gab;Jeong, Jum-Soo;An, Tae-Pung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1802-1809
    • /
    • 2009
  • Abstract The typical distribution systems have the power flow from distribution substations (sources) to customers (load) only as one direction. However, in the case where distributed generations (DG) such as PV system and wind power systems are connected to distribution systems, the DG output variations to distribution systems, so called reverse power flow, may cause the bi-directional power flow. So, the reverse power flow has severe impacts on typical power system, for example power quality problems, protection coordination problems, and so on. Especially, protection devices (sectionalizer) in primary feeder of distribution system interconnected with distributed generations may cause problems of malfunction, and then many customers could have problems like an interruption. So, this paper presents the bi-directional operation algorithm of protection devices to overcome the problems like mal-function. And, also this paper shows the effectiveness of proposed method by using both PSCAD/EMTDC software and test facility of protection devices to simulate the field distribution systems.