• Title/Summary/Keyword: 필터함수

Search Result 665, Processing Time 0.022 seconds

Baleen Whale Sound Synthesis using a Modified Spectral Modeling (수정된 스펙트럴 모델링을 이용한 수염고래 소리 합성)

  • Jun, Hee-Sung;Dhar, Pranab K.;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.69-78
    • /
    • 2010
  • Spectral modeling synthesis (SMS) has been used as a powerful tool for musical sound modeling. This technique considers a sound as a combination of a deterministic plus a stochastic component. The deterministic component is represented by the series of sinusoids that are described by amplitude, frequency, and phase functions and the stochastic component is represented by a series of magnitude spectrum envelopes that functions as a time varying filter excited by white noise. These representations make it possible for a synthesized sound to attain all the perceptual characteristics of the original sound. However, sometimes considerable phase variations occur in the deterministic component by using the conventional SMS for the complex sound such as whale sounds when the partial frequencies in successive frames differ. This is because it utilizes the calculated phase to synthesize deterministic component of the sound. As a result, it does not provide a good spectrum matching between original and synthesized spectrum in higher frequency region. To overcome this problem, we propose a modified SMS that provides good spectrum matching of original and synthesized sound by calculating complex residual spectrum in frequency domain and utilizing original phase information to synthesize the deterministic component of the sound. Analysis and simulation results for synthesizing whale sounds suggest that the proposed method is comparable to the conventional SMS in both time and frequency domain. However, the proposed method outperforms the SMS in better spectrum matching.

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.

An Experimental Study on the Sorption of Uranium(VI) onto a Bentonite Colloid (벤토나이트 콜로이드로의 우라늄(VI) 수착에 대한 실험적 연구)

  • Baik Min-Hoon;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.235-243
    • /
    • 2006
  • In this study, an experimental study on the sorption properties of uranium(VI) onto a bentonite colloid generated from Gyeongju bentonite which is a potential buffer material in a high-level radioactive waste repository was performed as a function of the pH and the ionic strength. The bentonite colloid prepared by separating a colloidal fraction was mainly composed of montmorillonite. The concentration and the size fraction of the prepared bentonite colloid measured using a gravitational filtration method was about 5100 ppm and 200-450 nm in diameter, respectively. The amount of uranium removed by the sorption reaction bottle walls, by precipitation, and by ultrafiltration was analyzed by carrying out some blank tests. The removed amount of uranium was found not to be significant except the case of ultrafiltration at 0.001 M $NaClO_4$. The ultrafiltration was significant in the lower ionic strength of 0.001 M $NaClO_4$ due to the cationic sorption onto the ultrafilter by a surface charge reversion. The distribution coefficient $K_d$ (or pseudo-colloid formation constant) of uranium(VI) for the bentonite colloid was about $10^4{\sim}10^7mL/g$ depending upon pH and ionic strength of $NaClO_4$ and the $K_d$ was highest in the neutral pH around 6.5. It is noted that the sorption of uranium(VI) onto the bentonite colloid is closely related with aqueous species of uranium depending upon geochemical parameters such as pH, ionic strength, and carbonate concentration. As a consequence, the bentonite colloids generated from a bentonite buffer can mobilize the uranium(VI) as a colloidal form through geological media due to their high sorption capacity.

  • PDF

Comparison of Compton Image Reconstruction Algorithms for Estimation of Internal Radioactivity Distribution in Concrete Waste During Decommissioning of Nuclear Power Plant (원전 해체 시 방사성 콘크리트 폐기물 내부 방사능 분포 예측을 위한 컴프턴 영상 재구성 방법의 비교)

  • Lee, Tae-Woong;Jo, Seong-Min;Yoon, Chang-Yeon;Kim, Nak-Jeom
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.217-225
    • /
    • 2020
  • Concrete waste accounts for approximately 70~80% of the total waste generated during the decommissioning of nuclear power plants (NPPs). Based upon the concentration of each radionuclide, the concrete waste from the decommissioning can be used in the determination of the clearance threshold used to classify waste as radioactive. To reduce the cost of radioactive concrete waste disposal, it is important to perform decontamination before self-disposal or limited recycling. Therefore, it is necessary to estimate the internal radioactivity distribution of radioactive concrete waste to ensure effective decontamination. In this study, the performance metrics of various Compton reconstruction algorithms were compared in order to identify the best strategy to estimate the internal radioactivity distribution in concrete waste during the decommissioning of NPPs. Four reconstruction algorithms, namely, simple back-projection, filtered back-projection, maximum likelihood expectation maximization (MLEM), and energy-deconvolution MLEM (E-MLEM) were used as Compton reconstruction algorithms. Subsequently, the results obtained by using these various reconstruction algorithms were compared with one another and evaluated, using quantitative evaluation methods. The MLEM and E-MLEM reconstruction algorithms exhibited the best performance in maintaining a high image resolution and signal-to-noise ratio (SNR), respectively. The results of this study demonstrate the feasibility of using Compton images in the estimation of the internal radioactive distribution of concrete during the decommissioning of NPPs.

An Index-Based Approach for Subsequence Matching Under Time Warping in Sequence Databases (시퀀스 데이터베이스에서 타임 워핑을 지원하는 효과적인 인덱스 기반 서브시퀀스 매칭)

  • Park, Sang-Hyeon;Kim, Sang-Uk;Jo, Jun-Seo;Lee, Heon-Gil
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.173-184
    • /
    • 2002
  • This paper discuss an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, Kim et al. suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multidimensional index using a feature vector as indexing attributes. For query processing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verify the superiority of our approach, we perform extensive experiments. The results reveal that our approach achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.

Development of depression diagnosis system using EEG signal (뇌파 측정 신호를 이용한 우울증 진단장치 개발)

  • Kim, Kyu-Sung;Jung, Ju-Hyeon;Lee, Woo-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.452-458
    • /
    • 2017
  • In this study, a device was developed for diagnosing depression using EEG signals from July 2016 to June 2017. For normal people, the left alpha rhythm is more activated than the right alpha rhythm, but for the depressed patients, the right alpha rhythm is more activated than the left one. An analog circuit and digital low pass filter were used for noise removal and amplification of EEG, and the Hamming window function was applied to eliminate the signal leakage generated by the fast Fourier transform. To verify the validity of the developed diagnosis system, the EEG of 20 university students in the 3rd and 4th grade with an average age of 24 years was measured. Calculations of the relative value of the left and right alpha rhythm for the depression diagnosis revealed a minimum, maximum, and mean value of 66.7, 113.3, and 92.2, respectively. In addition, 7 out of 20 subjects were between 90 and 95, and those with a higher mean deviation of approximately 20 tended to have mild depression. These results can provide meaningful data for the development of depression treatment equipment by solving the left and right brain asymmetry problem, and it may be applied usefully to diagnose depression after clinical trials on a large number of depressed patients.

Construction of Environmental Friendly Special-Purpose Ship for the Removal of Blue-green Algae (친환경적 녹조 제거용 특수선박 건조)

  • Shin, Jae-Ki;Yi, Hye-Suk;Jeong, Sun-A;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.404-406
    • /
    • 2009
  • This study note wished to introduce special-purpose ship for algae removal that is developed by core technology of our country. The ship is consisted of main frame and adjuvant that can attach and detach as cross (+) shape of a character. The characteristics of ship are super light weight and low draft. That is consisted of four devices as suction, collection, filtration and recovering units. Among these, filtration used screen filter (mesh size 30 ${\mu}m$). Also, can separate and remove water and algae by compression air participle notion. Percentage of moisture content of concentrated algal particle was 85%. Water parted with algae finally is exhausted to water area. Removal efficiency that compare by chlorophyll-$\alpha$ concentration was about 57% (inflow: 83.2 ${\mu}g\;L^{-1}$, outflow: 35.8 $[\mu}g\;L^{-1}$) without physical and chemical pretreatment. Forward, need to achieve effect test in various conditions (algal biomass, flow etc.) for efficiency and technological elevation of exclusion device. We wished to contribute in presuppression system construction of massive algal development that manage blue-green algae occurrence area effectively, and prevents spread as lower part of reservoir.

Determination of Optimum Stepped Vacuum Pressure and Settlement for IVPM-applied Ground (개별진공압공법이 적용된 지반의 최적 단계진공압 산정 및 침하예측)

  • Yoon, Myung-Seok;Ahn, Dong-Wook;Park, Jea-Man;Kim, Soo-Sam
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • Individual Vacuum Pressure Method (IVPM) is a soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and to strengthen the soft ground. This method does not require surcharge loads, different to embankment or pre-loading method. In this study, the ground improvement efficiency of Individual Vacuum Pressure Method was estimated when suction pressure increases step by step(-20, -40, -60, -80kPa) with different periods. During Individual Vacuum Pressure Method process, surface settlement and pore pressure were monitored, and cone resistance as well as water content were also measured after the completion of Individual Vacuum Pressure Method treatment. From the results, optimum duration of each step of vacuum pressure was determined, and the settlement was calculated using FEM numerical analysis.

Estimation of Unconfined Compressive Strength (UCS) of Microfine Cement Grouted Sand (마이크로 시멘트로 그라우팅 된 모래의 일축압축강도 예측)

  • Nam, Hongyeop;Lee, Woojin;Lee, Changho;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.5-15
    • /
    • 2018
  • The unconfined compressive strength (UCS) test through coring is widely used to determine the reinforcement effect of the ground with grouting. However, the UCS test through coring can disturb the ground, is expensive and takes a lot of time to prepare the specimen. In this study, the factors affecting UCS of microfine cement grouted sand are evaluated and an empirical equation of UCS of microfine grouted sand is suggested. It is observed that UCS increases linearly until 28 days, however, the increasing rate of strength decreases sharply after that 28 days. The W/C ratio is dominant factor influencing UCS and UCS increases exponentially with the decrease of water/cement (W/C) ratio. Also, UCS increases linearly with increasing the relative density ranging from 30% to 70% and with decreasing median particle size. However, in case of W/C ratio=1 and K6 ($D_{50}=0.47mm$), UCS is lower than that of K4 ($D_{50}=1.08mm$) and K5 ($D_{50}=0.80mm$) due to filtration effect. Based on the experimental results, the empirical equation of UCS of microfine cement grouted sand can be expressed as the function of median particle size ($D_{50}$), porosity (n) and W/C ratio.

Photoacoustic Nonlinearity to Absorption Coefficients in Photoacoustic Imaging with Focused Ultrasound Transducers (초점 초음파 측정기로 측정한 광음향 신호의 광 흡수계수에 대한 비선형성)

  • Kang, Dongyel
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.158-165
    • /
    • 2017
  • The physical shape of an ultrasound transducer has not been considered in previous studies of the photoacoustic saturation effect, where a photoacoustic signal's magnitude linearly increases as an absorption coefficient increases and it is finally saturated. In this paper, the effect of a spherically focused ultrasound transducer on photoacoustic nonlinearity is investigated. The focused ultrasound transducer's spatial filtering effect on photoacoustic signals is analytically derived considering the combined concept of a virtual point detector and Green function approach. The ultrasound transducer's temporal response (i.e., transfer function) effect on photoacoustic signals is considered by integrating photoacoustic signal values within the absorption area covered by a spatial resolution of the ultrasound transducer. Results from the analytically derived expression show that the magnitude of photoacoustic signals measured by a spherical focused ultrasound transducer shows a maximum at a specific absorption coefficient, and decreases after that maximum point as an absorption coefficient is increased. The origin of this photoacoustic nonlinearity is physically understood by comparing the ultrasound transducer's transfer functions and photoacoustic resonance spectra. In addition, this physical interpretation implies that the photoacoustic nonlinearity is strongly dependent on the irradiance distribution inside an absorption medium.