Browse > Article
http://dx.doi.org/10.7843/kgs.2018.34.7.5

Estimation of Unconfined Compressive Strength (UCS) of Microfine Cement Grouted Sand  

Nam, Hongyeop (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
Lee, Woojin (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
Lee, Changho (Dept. of Marine and Civil Engrg., Chonnam National Univ.)
Choo, Hyunwook (Dept. of Civil Engrg., Kyung hee Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.34, no.7, 2018 , pp. 5-15 More about this Journal
Abstract
The unconfined compressive strength (UCS) test through coring is widely used to determine the reinforcement effect of the ground with grouting. However, the UCS test through coring can disturb the ground, is expensive and takes a lot of time to prepare the specimen. In this study, the factors affecting UCS of microfine cement grouted sand are evaluated and an empirical equation of UCS of microfine grouted sand is suggested. It is observed that UCS increases linearly until 28 days, however, the increasing rate of strength decreases sharply after that 28 days. The W/C ratio is dominant factor influencing UCS and UCS increases exponentially with the decrease of water/cement (W/C) ratio. Also, UCS increases linearly with increasing the relative density ranging from 30% to 70% and with decreasing median particle size. However, in case of W/C ratio=1 and K6 ($D_{50}=0.47mm$), UCS is lower than that of K4 ($D_{50}=1.08mm$) and K5 ($D_{50}=0.80mm$) due to filtration effect. Based on the experimental results, the empirical equation of UCS of microfine cement grouted sand can be expressed as the function of median particle size ($D_{50}$), porosity (n) and W/C ratio.
Keywords
Microfine cement; Unconfined compressive strength (UCS); Water/Cement ratio (W/C); Relative density; Particle size;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akbulut, S. and Saglamer, A. (2002), "Estimating the Groutability of Granular Soils: A New Approach", Tunnelling and underground space technology, Vol.17, No.4, pp.371-380.   DOI
2 ASTM C136 (2006), "Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates", West Conshohocken, PA.
3 ASTM C1231 (2015), "Standard Practice for use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders", West Conshohocken, PA.
4 ASTM C940 (2010), "Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-aggregate Concrete in the Laboratory", West Conshohocken, PA.
5 ASTM D2488 (2009), "Standard Practice for Description and Identification of Soils (visual-manual procedure)", West Conshohocken, PA.
6 ASTM D4253 (2015), "Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density", West Conshohocken, PA.
7 ASTM D4254 (2015), "Standard Test Method for Maximum Index Density and Unit Weight of Soils using Vibratory Table", West Conshohocken, PA.
8 ASTM D854 (2014), "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer", West Conshohocken, PA.
9 Avci, E. and Mollamahmutoglu, M. (2016), "UCS Properties of Superfine Cement-grouted sand", Journal of Materials in Civil Engineering, 28(12), 06016015.   DOI
10 Bruce, D.A., Littlejohn, G.S., and Naudts, A. (1997), "Grouting Materials for Ground Treatment: A Practitioner's Guide", Grouting: Compaction, remediation and testing, Geotechnical Special Publication No.66, pp.306-334.
11 BS EN 12715 (2000), "Execution of Special Geotechnical Work: Grouting, British Adopted European Standard", London, UK.
12 Christopher, B.R., Atmatzidis, D., and Krizek, R.J. (1989), "Laboratory testing of chemically grouted sand", Geotechnical Testing Journal, Vol.12, No.2, pp.109-118   DOI
13 Chun et al. (2000), "Physical Properties Variation of Grout Materials based on the Water to Cement Ratio and the Mixing Speed", Journal of Korean Geo-Environmental Society, Vol.1, No.1, pp. 87-96.
14 Clough, G.W., Kuck, W.M., and Kasali, G. (1979), "Silicate-stabilized sands", Journal of Geotechnical and Geoenvironmental engineering, Vol.105, No.1, pp.65-82.
15 Clough, G.W., Sitar, N., Bachus, R.C., and Rad, N.S. (1981), "Cemented Sands under Static Loading", Journal of Geotechnical and Geoenvironmental engineering, Vol.107, No.6 pp.799-817.
16 Dano, C. and Hicher, P.-Y. (2002), "Evolution of Elastic Shear Modulus in Granular Materials Along Isotropic and Deviatoric Stress Paths", In 15th ASCE Engineering Mechanics Conference.
17 Dano, C., Hicher, P.-Y., and Tailliez, S. (2004), "Engineering Properties of Grouted Sands", Journal of Geotechnical and Geoenvironmental engineering, Vol.130, No.3, pp.328-338.   DOI
18 De Paoli, B., Bosco, B., Granata, R., and Bruce, D. (1992), "Fundamental Observations on Cement based Grouts (1): Traditional Materials", Soil improvement and Geosynthetics, Vol.1, pp.486-499.
19 Eklund, D. and Stille, H. (2008), "Penetrability due to Filtration Tendency of Cement-based Grouts", Tunnelling and Underground Space Technology, Vol.23, No.4, pp.389-398.   DOI
20 Gustin, E., Karim, U. F., and Brouwers, H. (2007), "Bleeding Characteristics for Viscous Cement and Cement-bentonite Grouts", Geotechnique, Vol.57, No.4, pp.391-395.   DOI
21 Mollamahmutoglu, M. and Yilmaz, Y. (2011), "Engineering Properties of Medium-to-fine Sands Injected with Microfine Cement Grout", Marine Georesources and Geotechnology, Vol.29, No.2, pp.95-109.   DOI
22 Ismail, M. A., Joer, H. A., Randolph, M. F., and Meritt, A. (2002), "Cementation of Porous Materials using Calcite", Geotechnique, Vol.52, No.5, pp.313-324.   DOI
23 Kaga, M. and Yonekura, R. (1991), "Estimation of Strength of Silicate Grouted Sand", Soils and foundations, Vol.31, No.3, pp. 43-59.   DOI
24 Markou, I. and Droudakis, A. (2013), "Factors Affecting Engineering Properties of Microfine Cement Grouted Sands", Geotechnical and Geological Engineering, Vol.31, No.4, pp.1041-1058.   DOI
25 Mutman, U. and Kavak, A. (2011), "Improvement of Granular Soils by Low Pressure Grouting", International Journal of Physical Sciences, Vol.6, No.17, pp.4311-4322.
26 Ozgurel, H.G. and Vipulanandan, C. (2005), "Effect of Grain Size and Distribution on Permeability and Mechanical behavior of Acrylamide Grouted Sand", Journal of Geotechnical and Geoenvironmental engineering, Vol.131, No.12, pp.1457-1465.   DOI
27 Pantazopoulos, I. and Atmatzidis, D. (2012), "Dynamic Properties of Microfine Cement Grouted Sands", Soil Dynamics and Earthquake Engineering, Vol.42, pp.17-31.   DOI
28 Perret, S., Palardy, D., and Ballivy, G. (2000), "Rheological behavior and Setting Time of Microfine Cement-based Grouts", Materials Journal, Vol.97, No.4, pp.472-478.
29 Henn, R. W., Association, Amerian Undergound Construction (2003), "AUA Guidelines for Backfilling and Contact Grouting of Tunnels and Shafts", Thomas Telford
30 Schwarz, L.G. and Krizek, R.J. (2000), "Evolving Morphology of Early Age Microfine Cement Grout. In Advances in Grouting and Ground Modification", Advance in grouting and Grouting and Ground Modification, Vol.292, pp.181-199.
31 Sayehvand, S. and B. Kalantari (2012), "Use of Grouting Method to Improve Soil Stability Against Liquefaction-A Review", Electronic Journal of Geotechnical Engineering, Vol.17, pp.1559-1566.
32 Sunitsakul, J., Sawatparnich, A., and Sawangsuriya, A. (2012), "Prediction of Unconfined Compressive Strength of Soil-cement at 7 Days", Geotechnical and Geological Engineering, Vol.30, No.1, pp.263-268.   DOI
33 Vaid, Y.P. and Nequssey, D. (1984), "Relative Density of Air and Water Pluviated Sand", Soil and foundation, Vol.24, No.2, pp. 101-105.   DOI
34 Warner, J. (2003), "Soil Solidification with Ultrafine Cement Grout", In Grouting and Ground Treatment, pp.1360-1371.
35 Yoon, J. and El Mohtar, C.S. (2014), "Groutability of Granular Soils Using Bentonite Grout based on Filtration Model", Transport in porous media, Vol.102, No.3, pp.365-385.   DOI
36 Zebovitz, S., Krizek, R., and Atmatzidis, D. (1989), "Injection of Fine Sands with Very Fine Cement Grout", Journal of geotechnical engineering, Vol.115, No.12, pp.1717-1733.   DOI