• Title/Summary/Keyword: 필름 센서

Search Result 179, Processing Time 0.034 seconds

Vibration Analysis of an Cantilever Beam in Partially Liquid-Filled Cylindrical Pipe (부분적으로 유체가 채워진 원통형 관내의 외팔보 진동해석)

  • 권대규;유계형;방두열;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1073-1078
    • /
    • 2003
  • This paper presents the vibration characteristics of a cantilever beam in contact with a fluid using a PZT actuator and PVDF film. dynamic behaviors of a flexible beam-water interaction system are examined. The effect of the liquid level on free vibration of the composite beam in a partially liquid-filled circular cylinder is investigated. The coupled system is subject to an undisturbed boundary condition un the fluid domain. In the vibration analysis of a wetted beam. the decoupled analyses between beam and fluid have been conventionally employed by considering first the composite beam vibration in the all and secondly Performing the correction taking account for surrounding fluid effects. That is, this investigation was to look at how natural frequencies, mode shapes. and damping are affected by liquid level variations. The signals from the sensor according to the applied input voltage are digitalized and filtered in order to obtain the dynamic characteristics of the composite beam in contact with fluid. It was found that the coupled natural frequencies decreased with the fluid level for the identical composite beam due to added mass effect. In case of the free-free boundary condition, the natural frequency gently decreased at fluid water level between 20% and 80% in the first tending mode and we found out the bends of stair shape for added mass effect of the fluid.

  • PDF

Dispersive Wave Analysis of a Beam under Impact Load by Piezo-Electric Film Sensor and Wavelet Transform (충격하중을 받는 보에서 압전 필름센서와 웨이브렛 변환을 이용한 문산파동의 해석)

  • Kwon., Il-Bum;Choi, Man-Yong;Jeong., Hyun-Jo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.215-225
    • /
    • 2001
  • Stress waves monitored on the surface of structures under various loading conditions can provide useful information on the structural health status. In this paper, stress waves are measured by several sensors when a steel beam is impacted by a ball drop. The sensors used include the piezo-electric film Sensor, the electrical strain gage, and the ultrasonic transducer, and special attention is given to the pieza film sensor. The wavelet transform is used for the time-frequency analysis of dispersive waves propagating in the beam. The velocities of the wave produced in the team due to the lateral impact is found to be frequency-dependent and identified as the flexural wave velocity based on the comparisons with the Timoshenko beam theory. A linear impact site identification method is developed using the flexural wave, and the impact sites of the beam can be accurately estimated by the piezo film sensors. It is found that the piezo film sensor is appropriate for sensing stress waves due to impact and for locating impact sites in the beam.

  • PDF

High-Sensitive Fiber-Optic pH Sensor Using Neutral Red Immobilized in Porous Sol-Gel Film (뉴트럴레드가 고정화된 다공성 졸-겔 필름을 이용한 고감도 광섬유 pH 센서의 특성)

  • Jeon, Da-Yeong;Yoo, Wook-Jae;Shin, Sang-Hun;Han, Ki-Tek;Park, Jang-Yeon;Park, Byung-Gi;Cho, Seung-Hyun;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.223-228
    • /
    • 2012
  • In this study, a fiber-optic pH sensor based on a pH sol-gel film is fabricated. The sol-gel film is made by co-polymerizing tetramethoxysilane, trimethoxymethylsilane, ethanol and distilled water. As a pH indicator, a neutral red is immobilized in a thin porous film formed by the sol-gel process. The pH change in a sensing probe gives rise to a change in the color of the pH sol-gel film, and the absorbance of reflected light through the pH sol-gel film is also changed. By using a spectrometer, therefore, the spectra of reflected lights in the sensing probe with different pH values are measured. Also, the relationships between the pH values and the absorbance are analyzed on the basis of the color variations of the pH sol-gel films. In repeated experiments, the fiber-optic pH sensor shows that it has reversibility, a high reproducibility and a wide absorbance change in a pH range from pH 5 to 9. Also, we confirmed that the fabricated pH sol-gel film exhibits a fast response time, little or no pH indicator leaching and a dynamic range of 2.04 dB from pH 5 to 9. Based on the results of this study, a fiber-optic pH sensor can be developed for the pH monitoring in the harsh environments.

Development of Reflection-type Fiber-optic pH Sensor Using Sol-gel Film (졸-겔 필름을 이용한 반사형 광섬유 pH 센서의 개발)

  • Yoo, Wook-Jae;Seo, Jeong-Ki;Jang, Kyoung-Won;Moon, Jin-Soo;Han, Ki-Tek;Park, Jang-Yeon;Lee, Bong-Soo;Cho, Seung-Hyun;Heo, Ji-Yeon;Park, Byung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.266-271
    • /
    • 2011
  • A reflection-type fiber-optic pH sensor, which is composed of a pH sol-gel film, plastic optical fibers, a mirror, a light source and a spectrometer, is developed in this study. As pH indicators, a bromthymol blue, a cresol red and a thymol blue are used, and they are immobilized in the sol-gel films. The emitted light from a light source is guided by a fiber-optic Y-coupler and plastic optical fibers to the pH sol-gel film in a pH sensing probe. The pH change in the sensing probe gives rise to a change in the color of the pH sol-gel film, and the optical characteristic of reflected light through the pH sol-gel film is also changed. Therefore, we have measured the spectra of reflected lights, which are changed according to the color variations of the pH sol-gel films with different pH values, by using of a spectrometer. Also, the relationships between the pH values and the intensities of reflected lights are obtained on the basis of the color variations of the pH sol-gel films.

Gas Sorption Analysis of Metal-organic Frameworks using Microresonators (마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석)

  • Kim, Hamin;Choi, Hyun-Kuk;Kim, Moon-Gab;Lee, Young-Sei;Yim, Changyong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-16
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are porous materials with nano-sized pores. The degree of gas adsorption and pore size can be controlled according to types of metal ions and organic ligands. Many studies have been conducted on MOFs in the fields of gas storage and separation, and gas sensors. For rapid and quantitative gas adsorption/desorption analyses, it is necessary to form various MOF structures in uniform films on a sensor surface. In this review, some of representative direct methods for uniformly synthesizing MOFs such as MIL-53 (Al), ZIF-8, and Cu-BDC from anodized aluminum oxide, zinc oxide nanorods, and copper thin films, respectively on the surface of a microresonator are highlighted. In addition, the operation principle of quartz crystal microbalance and microcantilever, which are representative microresonators, and the interpretation of signals that change when gas is adsorbed to MOFs are covered. This is intended to enhance the understanding of gas adsorption/desorption analysis of MOFs using microresonators.

Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors (고성능 유기 전계효과 트랜지스터를 위한 유기친화 게이트 절연층)

  • Lee, Minjung;Lee, Seulyi;Yoo, Jaeseok;Jang, Mi;Yang, Hoichang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2013
  • Organic semiconductor-based soft electronics has potential advantages for next-generation electronics and displays, which request mobile convenience, flexibility, light-weight, large area, etc. Organic field-effect transistors (OFET) are core elements for soft electronic applications, such as e-paper, e-book, smart card, RFID tag, photovoltaics, portable computer, sensor, memory, etc. An optimal multi-layered structure of organic semiconductor, insulator, and electrodes is required to achieve high-performance OFET. Since most organic semiconductors are self-assembled structures with weak van der Waals forces during film formation, their crystalline structures and orientation are significantly affected by environmental conditions, specifically, substrate properties of surface energy and roughness, changing the corresponding OFET. Organo-compatible insulators and surface treatments can induce the crystal structure and orientation of solution- or vacuum-processable organic semiconductors preferential to the charge-carrier transport in OFET.

Fabrication of Poly(methyl methacrylate) Beads Monolayer Using Rod-coater and Effects of Solvents, Surfactants and Plasma Treatment on Monolayer Structure (Rod 코팅을 이용한 Poly(methyl methacrylate) 비드의 단일층 형성 및 단일층 구조에 미치는 용매, 계면활성제, 플라즈마 처리의 영향)

  • Kim, Da Hye;Ham, Dong Seok;Lee, Jae-Heung;Huh, Kang Moo;Cho, Seong-Keun
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Fabrication of monolayer is important method for enhancing physical and chemical characteristics such as light shielding and antireflection while maintaining thin film properties. In previous studies, monolayers were fabricated by various methods on small substrates, but processes were complicated and difficult to form monolayers with large area. We used rod coating equipment with a small amount of coating liquid to form a HCP (hexagonal closed packing) coating of PMMA beads on PET(poly(ethylene terephthalate)) substrate with $20cm{\times}20cm$ size. We observed that changes in morphologies of monolayers by using the solvents with different boiling points and vapor pressures, by adapting surfactants on particles and by applying plasma treatment on substrates. The coverage was increased by 20% by optimizing the coating conditions including meniscus of beads, control of the attraction - repulsion forces and surface energy. This result can potentially be applied to optical films and sensors because it is possible to make a uniform and large-scale monolayer in a simple and rapid manner when it is compared to the methods in previous studies.

Detection of Tracheal Sounds using PVDF Film and Algorithm Establishment for Sleep Apnea Determination (PVDF 필름을 이용한 기관음 검출 및 수면무호흡 판정 알고리즘 수립)

  • Jae-Joong Im;Xiong Li;Soo-Min Chae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.119-129
    • /
    • 2023
  • Sleep apnea causes various secondary disease such as hypertension, stroke, myocardial infarction, depression and cognitive impairment. Early detection and continuous management of sleep apnea are urgently needed since it causes cardio-cerebrovascular diseases. In this study, wearable device for monitoring respiration during sleep using PVDF film was developed to detect vibration through trachea caused by breathing, which determines normal breathing and sleep apnea. Variables such as respiration rate and apnea were extracted based on the detected breathing sound data, and a noise reduction algorithm was established to minimize the effect even when there is a noise signal. In addition, it was confirmed that irregular breathing patterns can be analyzed by establishing a moving threshold algorithm. The results show that the accuracy of the respiratory rate from the developed device was 98.7% comparing with the polysomnogrphy result. Accuracy of detection for sleep apnea event was 92.6% and that of the sleep apnea duration was 94.0%. The results of this study will be of great help to the management of sleep disorders and confirmation of treatment by commercialization of wearable devices that can monitor sleep information easily and accurately at home during daily life and confirm the progress of treatment.

Designing and Fabricating of the High-visibility Smart Safety Clothing (고시인성 스마트 안전의류의 설계 및 제작)

  • Park, Soon-Ja;Kim, Sun-Woong
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.105-116
    • /
    • 2020
  • The purpose of this study is to progress the limitations and disadvantages of existing safety clothing by applying high technology to current safety clothing that is produced and distributed only with fluorescent fabrics and retroreflective materials. Therefore, the industrial suspender-type safety belt and engineering technology are introduced, designed, and fabricated to help save a life in an emergency. First, the suspender-type safety belt to be developed is designed to emit light by LED attached to the film, and the body of the belt-wearer is recognized from a distance through retroreflection from the flashing LED. It aims to support people's safety by preventing accidents during roadside work, rescue activities, and sports activities at night. Second, with the development of advanced devices when the user is in an unconscious state due to distress or falls into an unconscious state due to distress or accident, the tilt sensor of the control unit attached to the belt automatically detects the angle of the human body and generates light and sound. It is intended to further enhance the utilization by mounting a sensing and signaling device that generates a distress signal and shaping it in the form of a belt attached to a vest that can be easily detached from the outside of the garment. When the wearer falls due to an accident, the tilt sensor of this belt detects the angle change and then the controller generates a high-frequency sound and repeated LED blinking signals at the same time. In the case of conventional safety vests, it is almost impossible to detect that the person is wearing a vest when there is no ambient light, but in case of the safety belts in this study, the sound and light signals of the safety belt enable us to find the wearer within 100 meters even when there is no ambient light.

The Analysis of Mechanism for the Gas Sensor of MWCNT/ZnO Composites Film Using the NOX Gas Detection Characteristics (NOX 가스 검출 특성을 이용한 MWCNT/ZnO 복합체 필름 가스 센서의 메커니즘 분석)

  • Son, Ju-Hyung;Kim, Hyun-Soo;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.188-192
    • /
    • 2018
  • In this study, we fabricated an $NO_X$ gas sensor using a composite film of multi-walled carbon nanotubes (MWCNT)/zinc oxide (ZnO). Carbon nanotubes (CNTs) show good electronic conductivity and chemical-stability, and zinc oxide (ZnO) is a wide band gap semiconductor with a large exciton binding energy. Gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_X$ gas at different $NO_X$ concentrations. The sensitivity of the gas sensor increased with increasing gas concentrations. Additionally, while changing the temperature inside the chamber containing the MWCNT/ZnO gas sensor, we obtained the sensitivity and normalized responses for detecting $NO_X$ gas in comparison to ZnO and MWCNT film gas sensors. From the experimental results, we confirmed that the gas sensor sensing mechanism was enhanced in the composite-film gas-sensor and that the electronic interaction between MWCNT and ZnO contributed to the improved sensor performance.