• Title/Summary/Keyword: 필드

Search Result 1,577, Processing Time 0.034 seconds

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

Lightning Protection System of Solar Power Generation Device (태양광발전장치의 낙뢰보호 시스템)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2023
  • Among the failures of photovoltaic power generation facilities, failures caused by surges account for 20% of the total failure rate, and energy emissions of tens to hundreds [A] during power generation and electrical damage to inverters and connection boards lead to electrical safety accidents. In particular, in the case of lightning, an abnormal voltage is induced in an electric circuit to destroy insulation, and the current flowing at this time causes a fire and acts as a factor that accelerates the deterioration of parts. Due to this action, the problem of electrical safety of solar power generation devices spreading from outside the city center to the inside of the city center such as houses, apartments, and government offices is emerging. Since lightning strikes cause both field-based and conducted electrical interference, this effect increases with increasing cable length or conductor loops. In addition, surge damages not only solar modules, inverters and monitoring devices, but also building facilities, which can eventually cause operational shutdown due to fire of the photovoltaic power generation system and consequent financial loss. Therefore, in this paper, a lightning protection system for solar power generation devices is studied for the purpose of reducing property damage and human casualties due to the increase in fire and electrical safety accidents caused by lightning strikes in photovoltaic power generation systems.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

Catadioptric NA 0.6 Objective Design in 193 nm with 266 nm Autofocus (이중 파장 심자외선 카타디옵트릭 NA 0.6 대물렌즈 광학 설계)

  • Do Hee Kim;Seok Young Ju;Jun Ho Lee;Hagyong Kihm;Ho-Soon Yang
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • We designed a catadioptric objective lens with a 0.6 numerical aperture (NA) for semiconductor inspection at 193 nm. The objective lens meets major requirements such as a spatial resolution of 200 nm and a field of view (FOV) of 0.15 mm or more. We selected a wavelength of 266 nm for autofocus based on the availability of the light source. First, we built the objective lenses of three lens groups: a focusing lens group, a field-lens group, and an NA conversion group. In particular, the NA conversion group is a group of catadioptric lenses that convert the numerical aperture of the beam focused by the prior groups to the required value, i.e., 0.6. The last design comprises 11 optical elements with root-mean-squared (RMS) wavefront aberrations less than λ/80 over the entire field of view. We also achieved the athermalization of the objective lens with focus-shift alone satisfying the performance of RMS wavefront aberration below λ/30 at a temperature range of 20 ± 1.2 ℃.

Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm (무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구)

  • Weon, Ihn-Sik;Lee, Soon-Geul;Ryu, Jae-Kwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.945-953
    • /
    • 2018
  • In this paper, we use 3-D LIDAR for obstacle detection and avoidance maneuver for autonomous unmanned operation. It is aimed to avoid obstacle avoidance in unmanned water under marine condition using only single sensor. 3D lidar uses Quanergy's M8 sensor to collect surrounding obstacle data and includes layer information and intensity information in obstacle information. The collected data is converted into a three-dimensional Cartesian coordinate system, which is then mapped to a two-dimensional coordinate system. The data including the obstacle information converted into the two-dimensional coordinate system includes noise data on the water surface. So, basically, the noise data generated regularly is defined by defining a hypothetical region of interest based on the assumption of unmanned water. The noise data generated thereafter are set to a threshold value in the histogram data calculated by the Vector Field Histogram, And the noise data is removed in proportion to the amount of noise. Using the removed data, the relative object was searched according to the unmanned averaging motion, and the density map of the data was made while keeping one cell on the virtual grid map. A polar histogram was generated for the generated obstacle map, and the avoidance direction was selected using the boundary value.

A Narrative Inquiry on Korea Science Academy Physical Education Teachers's Assessment Experiences (한국과학영재학교 체육교사의 체육평가 경험에 대한 내러티브 탐구)

  • Lee, Jong-Min;Lee, Keun-Mo
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.3
    • /
    • pp.43-57
    • /
    • 2016
  • This narrative study aims to describe the experience of P.E. assessment that was conducted by P.E. teachers of Korea Science Academy of KAIST, and interpret the educational significance that was found in the process. The study participants were two P.E. teachers who were selected by decisive case sampling method. Data were collected mainly through official interviews with study participants, and through researcher's field notes, informal interviews, various minutes, students' evaluation of teaching, and emails between the researcher and study participants. Data were analyzed through inductive categorization, and to gain veracity of the study, there were integration of diverse materials, advice and suggestions of fellow researchers, continuous confirmation of study texts by study participants. Study participants, while conducting P.E. assessment in Korea Science Academy of KAIST, experienced effectiveness of evaluation such as qualitative development of P,E. classes in accordance with the simplified assessment, freedom from the chores of handling assessment results, students' improved perceptions of P.E. class, realization of safe classes without excessive competition, and the possibility of giving alternative evaluations to pass/fail system but at the same time experienced limitations such as concerns over gaining validity and reliability of P.E. evaluation, the students' attitude who take lightly of P.E. class, and the reality that teachers cannot fail students. The evaluation experiences of the two P.E teachers were educationally interpreted as encounter with good P.E. classes, invitation to P.E. class criticism, and the start of school P.E. culture that is led by students.

people who live with two wheels: MTB's life who changed their jobs through their leisure (두 바퀴 인생을 사는 사람들: 여가활동을 통해 관련 직업으로 이직한 MTB 참여자의 삶)

  • Ham, Hyung-Seok;Won, Young-Shin;Im, Sung-Chul
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.2
    • /
    • pp.95-110
    • /
    • 2016
  • The purpose of this research is to analyze and understand MTB(mountain bike) participants' life in subcultural perspective. This research was completed by 8 people live in Seoul, Gyeonggi and Incheon who regularly participated their activity and changed their job to MTB. Observe them by participation, in-depth interview, field notes and researcher's daily records were methods to collect these data. To accomplish this purpose of study, I chose ethnographic Research. As a result, feeling doubt of their previous life, be caught in unique fun of MTB that made them to think MTB leisure seriously as a job, experience of its professionalism they learnt, and changed their job voluntarily were majority opinions. After they changed their job, they seems to have weisure life, more enthusiastic, got positive attitudes than before. Final conclusion of this report is 'close relationship between MTB facility and day life ' and 'tourism's attraction brought them to change their job. This changes gave them satisfaction to their personal life. In socially, it made a large contribution for development of leisure industry by creating new jobs like MTB tour guide and MTB assemblyman.

A Case Study on Field Campaign-Based Absolute Radiometric Calibration of the CAS500-1 Using Radiometric Tarp (Radiometric Tarp를 이용한 현장관측 기반의 차세대중형위성 1호 절대복사보정 사례 연구)

  • Woojin Jeon;Jong-Min Yeom;Jae-Heon Jung;Kyoung-Wook Jin;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1273-1281
    • /
    • 2023
  • Absolute radiometric calibration is a crucial process in converting the electromagnetic signals obtained from satellite sensors into physical quantities. It is performed to enhance the accuracy of satellite data, facilitate comparison and integration with other satellite datasets, and address changes in sensor characteristics over time or due to environmental conditions. In this study, field campaigns were conducted to perform vicarious calibration for the multispectral channels of the CAS500-1. Two valid field observations were obtained under clear-sky conditions, and the top-of-atmosphere (TOA) radiance was simulated using the MODerate resolution atmospheric TRANsmission 6 (MODTRAN 6) radiative transfer model. While a linear relationship was observed between the simulated TOA radiance of tarps and CAS500-1 digital numbers(DN), challenges such as a wide field of view and saturation in CAS500-1 imagery suggest the need for future refinement of the calibration coefficients. Nevertheless, this study represents the first attempt at absolute radiometric calibration for CAS500-1. Despite the challenges, it provides valuable insights for future research aiming to determine reliable coefficients for enhanced accuracy in CAS500-1's absolute radiometric calibration.

Experiment of KOMPSAT-3/3A Absolute Radiometric Calibration Coefficients Estimation Using FLARE Target (FLARE 타겟을 이용한 다목적위성3호/3A호의 절대복사 검보정 계수 산출)

  • Kyoungwook Jin;Dae-Soon Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1389-1399
    • /
    • 2023
  • KOMPSAT-3/3A (K3/K3A) absolute radiometric calibration study was conducted based on a Field Line of sight Automated Radiance Exposure (FLARE) system. FLARE is a system, which has been developed by Labsphere, Inc. adopted a SPecular Array Radiometric Calibration (SPARC) concept. The FLARE utilizes a specular mirror target resulting in a simplified radiometric calibration method by minimizing other sources of diffusive radiative energies. Several targeted measurements of K3/3A satellites over a FLARE site were acquired during a field campaign period (July 5-15, 2021). Due to bad weather situations, only two observations of K3 were identified as effective samples and they were employed for the study. Absolute radiometric calibration coefficients were computed using combined information from the FLARE and K3 satellite measurements. Comparison between the two FLARE measurements (taken on 7/7 and 7/13) showed very consistent results (less than 1% difference between them except the NIR channel). When additional data sets of K3/K3A taken on Aug 2021 were also analyzed and compared with gain coefficients from the metadata which are used by current K3/K3A, It showed a large discrepancy. It is assumed that more studies are needed to verify usefulness of the FLARE system for the K3/3A absolute radiometric calibration.

AI-Based Object Recognition Research for Augmented Reality Character Implementation (증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구)

  • Seok-Hwan Lee;Jung-Keum Lee;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1321-1330
    • /
    • 2023
  • This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.