Journal of the Korean Institute of Intelligent Systems
/
v.9
no.5
/
pp.517-525
/
1999
In this paper, we propose efficient total recognition system of handwritten and printed numerals for
reducing the classification time. The proposed system consists of two-step neuroclassifier : Printed numerals
classifier and handwritten numerals classifier. In the proposed scheme, the printed numerals classifier
classifies the printed numerals rapidly with single MLP neural network by low-order feature vector and rejects
handwritten numerals. The handwritten numerals classifier classifies the handwritten numerals which is
rejected in printed numerals classifier with modularized cluster neural network by complex feature vector. In
order to verify the performance of the proposed method,handwritten numerals database of NIST and printed
numerals database which include various fonts are used in the experiments. In case of using the proposed
classifier, the overall classification time was reduced by 49.1% - 65.5% in comparison of the existent
handwritten classifier.
Handwritten character recognition is classified into on-line handwritten character recognition and off-line handwritten character recognition. On-line handwritten character recognition has made a remarkable outcome compared to off-line hacdwritten character recognition. This method can acquire the dynamic written information such as the writing order and the position of a stroke by means of pen-based electronic input device such as a tablet board. On the contrary, Any dynamic information can not be acquired in off-line handwritten character recognition since there are extreme overlapping between consonants and vowels, and heavily noisy images between strokes, which change the recognition performance with the result of the preprocessing. This paper proposes a method that effectively extracts the stroke including dynamic information of characters for off-line Korean handwritten character recognition. First of all, this method makes improvement and binarization of input handwritten character image as preprocessing procedure using watershed algorithm. The next procedure is extraction of skeleton by using the transformed Lu and Wang's thinning: algorithm, and segment pixel array is extracted by abstracting the feature point of the characters. Then, the vectorization is executed with a maximum permission error method. In the case that a few strokes are bound in a segment, a segment pixel array is divided with two or more segment vectors. In order to reconstruct the extracted segment vector with a complete stroke, the directional component of the vector is mortified by using right-hand writing coordinate system. With combination of segment vectors which are adjacent and can be combined, the reconstruction of complete stroke is made out which is suitable for character recognition. As experimentation, it is verified that the proposed method is suitable for handwritten Korean character recognition.
The advent of deep learning technology has made rapid progress in handwritten letter recognition in many languages. Handwritten Chinese recognition has improved to 97.2% accuracy while handwritten Japanese recognition approached 99.53% percent accuracy. Hanguel handwritten letters have many similar characters due to the characteristics of Hangeul, so it was difficult to recognize the letters because the number of data was small. In the handwritten Hanguel recognition using Hybrid Learning, it used a low layer model based on lenet and showed 96.34% accuracy in handwritten Hanguel database PE92. In this paper, 98.64% accuracy was obtained by organizing deep CNN (Convolution Neural Network) in handwritten Hangeul recognition. We designed a new network for handwritten Hangeul data based on GoogLenet without using the data augmentation or the multitasking techniques used in Hybrid learning.
Annual Conference on Human and Language Technology
/
1989.10a
/
pp.142-147
/
1989
필기체 문자는 인쇄체 문자와는 달리, 복잡한 변형이 따르므로, 인식 하는데 많은 문제점이 따른다. 그렇기 때문에 일반적인 필기체 인식에 있어서는 필기 자체에 대한 제한을 두어 변형을 적게한 문자를 인식 대상으로 삼고 있다. 이러한 문자는, 설정된 조건만 확실하게 만족한다면, 비교적 간단하게 인식 할 수 있다. 반면에, 자유 필기체 문자는, 제한 필기체 문자와는 달리 변형이 크기 때문에, 그 인식에는 많은 연구가 필요하다. 본 연구에서는, 자유 필기체 한글의 자모를 추출하는데 있어 두개의 parameter space method를 이용했다. 화상내에서의 혼합은, 기본적으로 5 개의 element ($\mid,\;\setminus,\;/,\;-,\;o$)로 구성되어 있고, 이 element를 정의하는데는 최소한 4 개의 parameter, 즉 element의 위치 [x, y], 크기 [1] 및 type [T] 등이 필요하다. 입력 화상에서 추출된 직선 및 원의 성분은 [x, y, l] 과 [x, y, T]의 2 개의 3-D parameter space 에 누적되고, parameter space 상에서의 병합 분할 과정을 거쳐, element 가 형성된다. 추출된 element 들은, parameter space 상에서의 방향성 및 상호 위치 관계에 의한 조합 형태로서, 미리 기술되어진 자모 모델과 비교되어 인식된다. 본 방법의 특정은, 문자의 크기에 무관하고, 해석방법에 의해서는, 끊어진 element나 불필요한 element 등의 왜곡된 element 들의 처리가 가능한 점, 4 차원 parameter space를 두개의 3 차원 parameter space로 분리, 처리시간과 기억용량의 절약을 기한점 등을 들 수 있다.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.3
/
pp.13-22
/
2024
Currently, with the proliferation of digital devices, the significance of handwritten texts in daily lives is gradually diminishing. As the use of keyboards and touch screens increase, a decline in Korean handwriting quality is being observed across a broad spectrum of Korean documents, from young students to adults. However, Korean handwriting still remains necessary for many documentations, as it retains individual unique features while ensuring readability. To this end, this paper aims to implement an application designed to improve and correct the quality of handwritten Korean script The implemented application utilizes the CRAFT (Character-Region Awareness For Text Detection) model for handwriting area detection and employs the VGG-Feature-Extraction as a deep learning model for learning features of the handwritten script. Simultaneously, the application presents the user's handwritten Korean script's reliability on a syllable-by-syllable basis as a recognition rate and also suggests the most similar fonts among candidate fonts. Furthermore, through various experiments, it can be confirmed that the proposed application provides an excellent recognition rate comparable to conventional commercial character recognition OCR systems.
The Journal of Information Technology and Database
/
v.4
no.2
/
pp.65-78
/
1998
본 논문에서는 획 상대위치 판별을 통한 온라인 필기체 한글 문자 인식에 관하여 연구하였다. 한글을 구성하는 획을 인식하기 위하여 각 획의 시작부분과 끝부분의 방향코드를 이용하였으며, 인식된 획들을 바탕으로 각 획들간의 상대위치 정보를 이용하여 자소를 인식하였다. 온라인 필기체 한글의 경우 획의 모양과 크기가 필기자에 따라 불규칙하게 변하므로 획의 모양보다는 획의 위치를 인식에 더 중요한 자료로 삼아 인식을 행하였다. 6,000자의 온라인 필기체 한글 문자에 대하여 실험한 결과, 문자당 평균인식속도 0.034초, 획 인식률 92.3%와 문자 인식률 94.6%를 보였다. 본 실험의 결과로서 온라인 필기체 인식시스템을 구성함에 있어서 획의 시작 부분과 끝부분의 진행방향이 획인식의 중요 요소임과 획들간의 상대적 위치가 한글 문자 인식에 있어서 중요한 요소임을 밝혔다.
Journal of the Institute of Convergence Signal Processing
/
v.23
no.4
/
pp.222-227
/
2022
In this paper, we implemented a Korean text generation and classification model based on a deep learning algorithm that can be applied to various industries. It consists of two implemented GAN-based Korean handwriting generation models and CNN-based Korean handwriting classification models. The GAN model consists of a generator model for generating fake Korean handwriting data and a discriminator model for discriminating fake handwritten data. In the case of the CNN model, the model was trained using the 'PHD08' dataset, and the learning result was 92.45. It was confirmed that Korean handwriting was classified with % accuracy. As a result of evaluating the performance of the classification model by integrating the Korean cursive data generated through the implemented GAN model and the training dataset of the existing CNN model, it was confirmed that the classification performance was 96.86%, which was superior to the existing classification performance.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.6
/
pp.151-156
/
2018
Because of its large differences in writing style, context-independency and high recognition accuracy requirement, free handwritten digital identification is still a very difficult problem. Analyzing the characteristic of handwritten digits, this paper proposes a new handwritten digital identification method based on combining structural features. Given a handwritten digit, a variety of structural features of the digit including end points, bifurcation points, horizontal lines and so on are identified automatically and robustly by a proposed extended structural features identification algorithm and a decision tree based on those structural features are constructed to support automatic recognition of the handwritten digit. Experimental result demonstrates that the proposed method is superior to other general methods in recognition rate and robustness.
Journal of the Korea Society of Computer and Information
/
v.16
no.9
/
pp.27-33
/
2011
In this paper, we propose an efficient on-line handwritten digit recognition base on Convex-Concave curves feature which is extracted by a chain code sequence using Smith-Waterman alignment algorithm. The time sequential signal from mouse movement on the writing pad is described as a sequence of consecutive points on the x-y plane. So, we can create data-set which are successive and time-sequential pixel position data by preprocessing. Data preprocessed is used for Convex-Concave curves feature extraction. This feature is scale-, translation-, and rotation-invariant. The extracted specific feature is fed to a Smith-Waterman alignment algorithm, which in turn classifies it as one of the nine digits. In comparison with backpropagation neural network, Smith-Waterman alignment has the more outstanding performance.
Proceedings of the Korean Society of Computer Information Conference
/
2014.01a
/
pp.387-390
/
2014
본 논문에서는 현대사회에서 응용분야가 광범위하고, 높은 인식율과 빠른 처리속도를 위하여 많은 연구가 진행되어왔던 오프라인 필기체 인식 중 디지털 펜을 위한 새로운 필기체 문자 인식 시스템과 이를 이용한 화상 채팅 시스템을 제안한다. 이 시스템의 문자 인식에 필요한 처리는 체인코드에 기반하며 유니코드와 획 코드를 이용하여 처리하는 필기체 문자 인식 시스템으로, 일반적으로 터치 패널이 없는 데스크 탑 과 노트북에서도 터치 펜 기능을 가능하게 하는 디지털 펜을 위한 필기체 문자 인식 시스템이며 화상 채팅은 WSAEventSelect Model을 사용하여 제작한 시스템이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.