• Title/Summary/Keyword: 핀 홀

Search Result 37, Processing Time 0.025 seconds

사이클 화학 기상 증착 시스템에 의해 제조된 다층 무기 박막의 유기 발광 다이오드 박막 봉지

  • Lee, Jun-Hyeok;Min, Seok-Gi;Han, Yeong-Gi;An, Jae-Seok;Choe, Beom-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.397.2-397.2
    • /
    • 2014
  • 유기 발광 다이오드 (OLED)의 상용화를 위해 해결해야할 기술적 문제 중하나는 장수명이다. OLED에 적용된 유기물 층은 수분과 산소에 취약하여 소자 수명을 단축하는 요소로 작용하는데, 이를 해결하기 위해 유기물을 보호하며, 유기물 내로 침투되는 수분과 산소를 제어하기 위한 보호 층의 증착이 필수적이다. 필수적이다. 본 연구에서는, 사이클 화학 기상 증착법(C-CVD)을 이용하여 SiN/SiCN/SiN 구조의 무기 박막을 증착하여 유기물 보호층으로서의 적용 가능성을 제시하고자 한다. 이 때 각층의 두께는 각 각 10 nm이다. 증착된 다층 무기 박막은 비정질 상으로 수분 침투 보호막으로서 적당하다. 다층 무기 박막의 수분에 대한 저항성은 칼슘을 이용한 투과도 변화를 이용하여 측정하였다. 칼슘을 이용한 투과도 측정을 위해 고분자 PEN 필름위에 칼슘을 60nm 두께로 증착 시키고, 이어서 무기물인 SiN/SiCN/SiN의 다층 박막을 확산 방지층으로 증착 하였다. 제작된 소자는 온도 $85^{\circ}C$, 상대습도 85%의 가혹 조건에서 시간에 따른 표면 변화 및 투과도의 변화를 측정하였다. SiN/SiCN/SiN 구조를 갖는 무기 박막 층의 투습도는 3000시간까지는 $3.2{\times}10-5g/m/day$를 유지하였다. 이는 OLED 소자의 상용화를 위한 요구 조건에 근접한 값이다. 그러나 투습도는 측정 시간이 6000시간이 지난 후에 급격 증가하는데 이것은 30nm 두께의 SiN/SiCN/SiN의 확산 방지층에 임계 수명이 존재 한다는 것을 의미 한다고 할 수 있다. C-CVD 기술에 의해 제조된 다층 무기 박막 보호 층의 경계면에서 각 층간의 intermixing 현상이 관측되었으며, 이는 무기물 층의 결함과 핀 홀을 통해 내부로 확산 되는 수분의 침투 경로를 효과적으로 제어할 수 있는 방법이다. 본 연구 결과는 유연 기판 상에 제작된 OLED 소자에 적용 가능한 기술로서 소자 수명의 연장 뿐만 아니라 경량화에도 기여할 수 있는 기술이다.

  • PDF

Development of a Measuring Instrument for the Coefficient of Luminous Intensity of Retro-Reflection of Miniature Telecentric Cameras (소형 텔레센트릭 카메라 광학계의 재귀반사 측정 방법 연구 및 측정 장치 개발)

  • Yeo, TaeWoon;Karasik, V.E.;Kim, Young Il
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.6
    • /
    • pp.334-339
    • /
    • 2014
  • In this paper, the optical properties of a miniature telecentric camera are studied analytically and experimentally. By means of optical properties, the luminous intensity of retro-reflection of a miniature telecentric optical system is investigated. First, from a simulation the theoretical value of the coefficient of luminous intensity of retro-reflection of a miniature telecentric system is estimated. Second, a miniature telecentric camera device is designed, and the value of the coefficient of luminous intensity of retro-reflection of the actual device is measured through experiment. From simulation and experiment, we found that both the estimated and observed values of the coefficient of luminous intensity of retro-reflection range from 0.002 to $0.03m^2/sr$ (P384200CPH: $0.0042-0.018m^2/sr$, P285200CPH: $0.0045-0.0297m^2/sr$, P321450S: $0.0021-0.00963m^2/sr$) at 1.4 to 4.9 arcminute. The results prove the significance of the mechanisms used to design the miniature telecentric camera, and the experimental method. Accordingly, with these significant results, this study contributes to the development of theory and practice in optical engineering science.

Designing Modified Atmosphere Packaging for Persimmon (Diospyros kaki cv. Fuyu) Fruit Based on Respiration Modelling (단감의 최적 Modified Atmosphere포장 규격 설정)

  • Ahn, Gwang-Hwan;Choi, Seong-Jin;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.2
    • /
    • pp.67-73
    • /
    • 2007
  • A respiration rate analysed by enzyme kinetics-based respiration model and gas permeability data of LDPE film were applied to design the optical modified atmosphere (MA) packaging condition of persimmon (Diospyros kaki cv. Fuyu) fruits. The fruit quality rapidly decreases due to physiology disorder such as softening and peel blackening. $O_2$ permeance ($Q_{O2}$ in $ml{\cdot}hr^{-1}{\cdot}atm^{-1}{\cdot}m^{-2}$) and $CO_2$ performance ($Q_{CO2}$ in $ml{\cdot}hr^{-1}{\cdot}atm^{-1}{\cdot}m^{-2}$) of low density polyethylene (LDPE) film samples were measured at $0^{\circ}C$ and described as function of thickness (L in ${\mu}m$) as $Q_{O2}=(2540{\times}1/L)-16$, and $Q_{CO2}=(13742{\times}1/L)-70$, respectively. MA package containing single persimmon fruit of 225g was designed and tested experimentally at $0^{\circ}C$ by using LDPE films. Package atmospheres predicted from the relationship of $O_2$, $CO_2$ and $N_2$ balances on the packages was in good agreement with those obtained experimentally. Physiology disorder occurrence was the lowest at 52 ${\mu}m$ package that attained optimum gas condition ($O_2$ 2.8% and $CO_2$ 5.4%). The computer simulation was found to be effective to help to design the optimum MA packaging condition of individual persimmon fruit.

  • PDF

Evaluation of Anastomotic Strength and in-vitro Degradability with Microvascular Anastomosis Coupler Based on Injection Molding Condition made by Biodegradable Polycaprolactone(PCL) (생체분해성 폴리카프로락톤(PCL) 미세혈관 문합커플러의 사출성형조건에 따른 문합강도 및 in-vitro 분해능 평가)

  • Ahn, Geun-Seon;Han, Gig-Bong;Oh, Seung-Hyun;Park, Jong-Woong;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.167-177
    • /
    • 2013
  • The use of mechanical anastomosis coupler instead of sutures has been increasing in microvascular anastomosis surgery. However, non-biodegradable anastomosis coupler has problems such as not only inflammatory reaction but also remaining permanently in operation wound. Therefore, we fabricated biodegradable anastomosis coupler using injection molding process to overcome the limitation of non-biodegradable anastomosis coupler. In various injection molding process conditions, the shrinkage was calculated with different cylinder temperatures and injection molding pressures and anastomotic strength was measured. As a result, changes in shrinkage hole part larger than the pin part. In addition, the shrinkage in the cylinder at higher temperatures increase. However, the higher the injection pressure, shrinkage tends to decrease, respectively. In-vitro degradation behavior of PCL anastomotic coupler evaluated for 12 weeks, water uptake was increased and molecular weight was accompanied by a reduction in mass of the biological degradation and reduction of anastomotic strength was confirmed. However, decreased levels of anastomotic strength enough to exceed the requirements of preclinical surgery, PCL microvascular anastomosis coupler suitable candidate materials that could identify.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도 계측시 잡음원인과 대책)

  • Kwon, Soon-Tae;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.189-197
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the interference of Mie scattering, which is main obstacle of the measuring concentration with Rayleigh scattering, a hardware filter was installed for reducing the number density of particles. Furthermore a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. In addition, background noisy was reduced by adjusting the optical array and applying the pin hall and beam trap. The results show that LRS can provide useful information about concentration field and the software filter is very effective method to remove Mie interference.

A Study on Loading Method of Large Scaffolding Module for LNG Carriers Using TRIZ (TRIZ를 이용한 LNG 운반선 대형 비계 모듈의 탑재 방안 연구)

  • Park, Myeong-Chul;Shin, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.94-100
    • /
    • 2021
  • To improve the productivity of cargo containment construction for a membrane LNG carrier, it is important to shorten the installation period and process of the scaffolding system, which is a construction workbench of a cargo containment for a membrane LNG carrier. As an effective method, opinions are being gathered to enlarge the lifting unit from the existing two stages to eight stages. On the other hand, the stresses around the pin and hole will increase significantly because of the increase in lifting load according to the large size of the module. The purpose of this study was to establish a new large module-lifting plan by introducing TRIZ to solve these problems. This study adopted a method to utilize 40 inventive principles, which is one of the various problem-solving tools of TRIZ. First, technical contradictions were derived, the engineering parameters were selected. Second, efficient inventive principles were selected to overcome the technical contradictions using a contradiction matrix. Finally, the general and specific solutions were derived through the selected inventive principle, and structural analysis confirmed that the stress generated in the structure was low. The utility of TRIZ was confirmed by the successful lifting of large modules using the established lifting method.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.