DOI QR코드

DOI QR Code

Development of a Measuring Instrument for the Coefficient of Luminous Intensity of Retro-Reflection of Miniature Telecentric Cameras

소형 텔레센트릭 카메라 광학계의 재귀반사 측정 방법 연구 및 측정 장치 개발

  • Yeo, TaeWoon (Department of Radioelectronics and Laser Technology, Bauman Moscow State Technical University) ;
  • Karasik, V.E. (Department of Radioelectronics and Laser Technology, Bauman Moscow State Technical University) ;
  • Kim, Young Il (Department of Nano-optical Engineering, Korea Polytechnic University)
  • 여태운 (바우만 모스크바 국립 공과대학교, 무선 전자 및 레이저 기술학과) ;
  • 카라식 발레리 (바우만 모스크바 국립 공과대학교, 무선 전자 및 레이저 기술학과) ;
  • 김영일 (한국산업기술대학교, 나노-광공학과)
  • Received : 2014.05.02
  • Accepted : 2014.11.27
  • Published : 2014.12.25

Abstract

In this paper, the optical properties of a miniature telecentric camera are studied analytically and experimentally. By means of optical properties, the luminous intensity of retro-reflection of a miniature telecentric optical system is investigated. First, from a simulation the theoretical value of the coefficient of luminous intensity of retro-reflection of a miniature telecentric system is estimated. Second, a miniature telecentric camera device is designed, and the value of the coefficient of luminous intensity of retro-reflection of the actual device is measured through experiment. From simulation and experiment, we found that both the estimated and observed values of the coefficient of luminous intensity of retro-reflection range from 0.002 to $0.03m^2/sr$ (P384200CPH: $0.0042-0.018m^2/sr$, P285200CPH: $0.0045-0.0297m^2/sr$, P321450S: $0.0021-0.00963m^2/sr$) at 1.4 to 4.9 arcminute. The results prove the significance of the mechanisms used to design the miniature telecentric camera, and the experimental method. Accordingly, with these significant results, this study contributes to the development of theory and practice in optical engineering science.

이 논문에서는 소형센트릭 카메라의 광학적 특성이 분석적, 실험적으로 연구되었다. 광학적 특성으로 소형센트릭광학계의 재귀반사 광도계수가 조사되었다. 우선, 시뮬레이션을 통해서, 이론적 재귀반사광도계수 값을 측정하였다. 두번째로, 소형센트릭 카메라 장치를 디자인 하였으며, 이후 실험을 통해 실제 장치의 재귀반사광고계수를 측정하였다. 시뮬레이션과 시험을 통해, 재귀반사광도계수의 측정치 및 실험치 모두가 (P384200CPH: $0,0042m^2/sr{\sim}0,018m^2/sr$, P285200CPH: $0,0045m^2/sr{\sim}0,0297m^2/sr$, P321450S: $0,0021m^2/sr{\sim}0,00963m^2/sr$) 1.4 ~ 4.9의 분각에서 $0,002{\sim}0,03m^2/sr$의 범위에 있음을 발견하였다. 이 결과는, 실제 장비를 구상하는데 사용된 메커니즘과 실험방법의 중요성(유효성)을 증명한다. 이에따라, 이 유효한 결과를 통해서, 이 연구는 광학공학의 이론과 실제의 발전에 기여하였다.

Keywords

References

  1. M. Young, "Pinhole optics," Opt. Soc. America 10, 2763-2767 (1971).
  2. Chumdan Sa, "Miniature CCD camera functions and instructions," Automation Systems, 126-133 (1987).
  3. V. E. Karasik and A. F. Shirankov, "Analisys retro-reflective laser beam," BMSTU 187-197 (1990).
  4. CIE Publication N 72, "Guide to the properties and uses of retro-reflectors at night," (1997).
  5. N. V. Baryshnikov and V. E. Karasik, "Optical reflective system's spatial frequency characteristics laboratory research, Vestnik MSTU. Ser.: Instrument. Spec. Issue," Laser and Optoelectronic Devices and Systems, 11-15 (1998).
  6. V. E. Karasik, T. W. Yeo, and I. V. Zivotovsky, "Electrooptical stage for measuring the retro-reflection radiation characteristics of optical systems concerning with miniature CCTV camera," Dynamics of Complex Systems 2, t8, 100-107 (2014).
  7. W. Choung, "The rational regulation of illegal & harmful information in cyberspace," 9-16, 68 (2005).
  8. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2006), Chapter 3, 5, 10.
  9. E. F. Robert, T. G. Biljana, and P. R. Yoder, Optical System Design (McGraw Hill, 2008), pp. 35-258.
  10. T. W. Yeo and I. V. Zivotovsky, "Experimental research method for retro-reflective characteristics of optical camera systems CCTV- FSUE << Electronics >>," 270-278 (2013).
  11. N. Harada, "Pinhole video camera," U.S. Patent 6335759 B1(1997).
  12. N. V. Baryshnikov, V. E. Karasik, and I. V. Zivotovsky, "Retro-reflective characteristics measurement method," Russia Federation Patent No. 2202814.
  13. T. W. Yeo, "Drowsiness detection method," Korea Patent Application 10-2013-0061701 (2014).
  14. Newcon Optic, "Sniper detection system," http://www.newconoptik.com/Specs/LAS1000.pdf
  15. Special Tactical Systems, "Anti-sniper," Optic Detection Device, http://www.anti-systems.ru/extrainfo/AntisniperM75%20Ru.pdf
  16. Brickhouse Security, "Find a hidden camera in seconds," http://www.brickhousesecurity.com/category/counter+surveillance/hidden+camera+detectors.do
  17. HanKwang Opto, "Pinhole lenses Р285200CPH, Р384200CPH, P321450S," www://optical.hkopto.com.
  18. Sony CCD Sensititity, "ICX205AL" http://www.ccd.com/pdf/ccd_205.pdf
  19. Blooming, "Blooming effect," http://terms.naver.com/entry.nhn?docId=656595&cid=367&categoryId=367
  20. I. V. Zivotovsky, "Development and research laser-electronic measurement system for retro-reflective energy characteristics of optoelectronic devices," Ph. D. Dissertation Dr. Sci. Tech. Sciences/Moscow (2005), p. 282.