• Title/Summary/Keyword: 핀치온도차

Search Result 7, Processing Time 0.021 seconds

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to pinch point temperature difference (핀치포인트온도차에 따른 해양온도차발전용 유기랭킨사이클의 성능분석)

  • Kim, Jun-Seong;Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.476-483
    • /
    • 2016
  • An organic Rankine cycle for ocean thermal energy conversion system is a generating cycle using the temperature difference between surface water and deep water of the ocean. The working fluid is an important factor in the thermodynamic performance of an organic Rankine cycle. There is pinch point analysis as thermodynamic analysis of an organic Rankine cycle. This study performed a thermodynamic performance analysis according to variation in the pinch point temperature difference in heat exchangers and variation of outlet temperature of heat source and heat sink. It analyzed the thermodynamic performance by applying seven types of simple working fluids in a simple Rankine cycle for ocean thermal energy conversion that was designed according to pinch point analysis. As a result of the performance analysis, cycle irreversibility and total exergy destruction factor more decreased, and second law efficiency more increased in the lower pinch point temperature difference and temperature variation of heat source and heat sink in heat exchangers. In addition, the irreversibility changed greatly at a point that occurred in the thermodynamic variation. Among the selected working fluids, RE245fa2 showed the best thermodynamic performance, and the performance of all working fluids was observed to be similar. It needs a strict theoretical basis about diverse factors with thermodynamic performances in selecting heat exchangers and working fluids.

Characteristics of Thermodynamic Performance of Heat Exchanger in Organic Rankine Cycle Depending on Pinch Temperature Difference (유기랭킨사이클에서 핀치온도차의 변화에 따른 열교환기의 열역학적 성능특성)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;PARK, SANG HEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.590-599
    • /
    • 2015
  • In this paper a performance analysis is carried out based on the first and second laws of thermodynamics for heat exchanger in organic Rankine cycle (ORC) for the recovery of low-temperature finite thermal energy source. In the analysis, effects of the selection of working fluid and pinch temperature difference are investigated on the performance of the heat exchanger including the effectiveness of the heat exchanger, exergy destruction, second-law efficiency, number of transfer unit (NTU), and pinch point. The temperature distribution are shown depending on the working fluids and the pinch temperature difference. The results show that the performance of the heat exchanger depends on the pinch temperature difference sensitively. As the pinch temperature increases, the exergy destruction in the evaporator increases but the effectiveness, second law efficiency and NTU decreases.

Study on the Performance Variation of Gas Turbine Air Compressor Integrated with Air Separation Unit in IGCC Power Plant (IGCC 발전소내 공기분리장치와 연계된 가스터빈 공기압축기의 성능변화에 관한 연구)

  • Lee, Chan;Kim, Hyung-Taek;Yoon, Yong-Seung
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.98-103
    • /
    • 1996
  • 석탄가스화복합발전소내 공기분리장치와 연계된 가스터빈 공기압축기의 성능병화를 예측할 수 있는 해석방법을 제안하였다. 공기분리장치와 연계된 가스터빈용 공기압축기의 성능변화는 유선곡률방법과 압력손실모델을 결합한 해석방법을 사용하였으며, 예측결과들을 실제 압축기성능 시험 결과와 비교하여 예측정확도를 검증하였다. 제안된 압축기성능 해석방법을 근간으로, 압축기와 공기분리장치의 연계조건인 열교환기의 핀치포인트 온도차, 추출공기량 및 추출 공기압력이 압축기 성능변화에 미치는 영향을 정량적으로 예측하였다. 공기추출량이 늘어나거나 핀치포인트 온도차가 커질수록, 압축기의 압축비 및 소요동력은 증가하나, 압축기 효율은 공기추출량의 증가에 따라 고압공기추출시에는 저하되고, 저압공기추출시에는 향상되었다. 더 나아가, 압축기의 일반화된 성능특성곡선의 제시를 통해, 압축기 효율을 극대화 할 수 있는 압축기/공기분리장치 간 연계조건의 최적화를 시도하였다.

  • PDF

Thermodynamic Optimization of a Organic Rankine Power Cycle (유기 랭킨 사이클 시스템의 열역학적 최적화)

  • Lee, W.Y.;Won, S.H.;Chung, H.S.
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.35-45
    • /
    • 1990
  • An analytical equation to estimate the Rankine power cycle efficiency at maximum power for the given mass flow rates of heating and cooling fluids is derived. The accuracy of the result is shown by comparing the analytical values with those calculated one using detailed thermodynamic data. The results indicate that the thermal efficiency at maximum power depends primarily on the initial temperatures of the heating and cooling fluids, and it also depends on the pinch-temperature differences between the working fluid and the heating and cooling fluids. The efficiency at maximum power provides a measure of the power available in a practical Rankine heat engine.

  • PDF

Core Exchanger 주변 열교환기들의 효율적인 에너지 관리를 위한 열 교환망 합성에 관한 연구

  • 조석연;서경원
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.136-143
    • /
    • 1996
  • 본 연구에서는 정유공정의 한 부부인 demethanizer의 core exchanger 주위 열교환기들에 대해 핀치설계법(pinch desgin method)을 이용하여 새로운 열교환망 합성을 수행하였다. 이로부터 초기에 설정했던 최소접근온도차가 총비용, 즉, 장치비와 에너지 비용에 결정적인 역할을 하는 것으로 확인되었다. 따라서, 본 연구에서는 이 총비용의 목표값이 최소가 되는 최적 최소접근온도차가 존재하고, 이로부터 열교환망 합성이 수행되어져야 최적의 열교환망 합성이 이루어져야 한다는 결론을 얻었다.

  • PDF

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle (작동유체 및 사이클에 따른 해양온도차발전용 유기랭킨사이클의 성능분석)

  • Kim, Jun-Seong;Kim, Do-Yeop;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.881-889
    • /
    • 2015
  • Ocean thermal energy conversion is an organic Rankine cycle that generates power using the temperature difference between surface water and deep water. This study analyzes the thermodynamic efficiency of the cycle, which strongly depends on the working fluid and the cycle configuration. Cycles studied included the classical simple Rankine cycle, Rankine cycles with an open feedwater heater and an integrated regenerator, as well as the Kalina cycle. Nine kinds of simple refrigerants and three kinds of mixed refrigerants were investigated as the working fluids in this study. Pinch-point analysis that set a constant pinch-point temperature difference was applied in the performance analysis of the cycle. Results showed that thermodynamic efficiency was best when RE245fa2 was used as the working fluid with the simple Rankine cycle, the Rankine cycles with an open feedwater heater and an integrated regenerator, and when the mixing ratio of $NH_3/H_2O$ was 0.9:0.1 in the Kalina cycle. If the Rankine cycles with an open feedwater heater, an integrated regenerator, and the Kalina cycle were used for ocean thermal energy conversion, efficiency increases could be expected to be approximately 2.0%, 1.0%, and 10.0%, respectively, compared to the simple Rankine cycle.

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF