• Title/Summary/Keyword: 피폭방사선량 분석

Search Result 199, Processing Time 0.026 seconds

An Analysis of Radiation Field Characteristics for Estimating the Extremity Dose in Nuclear Power Plants (원전 종사자의 말단선량평가를 위한 고피폭 접촉 방사선장 특성분석)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.176-183
    • /
    • 2009
  • Maintenance on the water chamber of steam generator during outage in nuclear power plants (NPPs) has a likelihood of high radiation exposure to whole body of workers even short time period due to the high radiation exposure rates. In particular, it is expected that hands would receive the highest radiation exposure because of its contact with radiation materials. In this study, characteristic analysis of inhomogeneous radiation fields for contact operations was conducted using thermoluminescent dosimeter (TLD) readouts from the application tests of two-dosimeter algorithm to Korean NPPs in 2004. It is regarded that inhomogeneous radiation fields for contact operations in NPPs are dominated by high energy photons. In addition, field tests for workers who participated in maintenance on the steam generator during outage at Ulchin NPPs in 2009 and pressure tube replacement at Wolsong NPPs in 2009 were conducted to analyze radiation fields and to estimate the extremity dose. As a result, radiation fields were dominated by high energy photons.

TLD's Glow Curve and Radiation Exposure Amount Analysis at Environment with/without Magnetic Field Exposure as Time Passing (시간 경과에 따른 자기장 노출 유·무 환경에서 열형광선량계의 글로우 곡선 및 피폭 방사선량 분석)

  • Lee, Jae-Heon;Ko, Seong-Jin;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.419-426
    • /
    • 2016
  • The research is done to analyze the change of personal dosimeter according to the elapsed times(24 hours, 1 week, 2 weeks, 3 weeks, 4 weeks) and magnetic field and find out the effective exposure treatment for radiation workers. At first, research the heat treatment and radiation of grouped TLD and keep them in different environments-exposed separately to observe the consequences of glow curve and the level of radiation exposure. As a result, we could find that 24 hours passing TLD group showed the difference in glow curve and the level of radiation. This can be considered as the change caused by magnetic exposure. Also the average radiation exposure level of TLD group, unexposed to the magnetic field, was 15.41 mSv. And the average radiation exposure level of TLD group, exposed to the magnetic field, was 14.83 mSv which decreased the biggest amount(3.80%) among the other groups. If a radiation worker, who works in PET-MRI room, uses TLD as a personal dosimeter, the level of real radiation exposure caused by exposure to the magnetic field won't change significantly as recorded at a regular record cycle but with not regular record but interim record, the lower exposure dose will be appeared than the real level of radiation.

The Plan of Dose Reduction by Measuring and Evaluating Occupationally Exposed Dose in vivo Tests of Nuclear Medicine (핵의학 체내검사 업무 단계 별 피폭선량 측정 및 분석을 통한 피폭선량 감소 방안)

  • Kil, Sang-Hyeong;Lim, Yeong-Hyeon;Park, Kwang-Youl;Jo, Kyung-Nam;Kim, Jung-Hun;Oh, Ji-Eun;Lee, Sang-Hyup;Lee, Su-Jung;Jun, Ji-Tak;Jung, Eui-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.26-32
    • /
    • 2010
  • Purpose: It is to find the way to minimize occupationally exposed dose for workers in vivo tests in each working stage within the range of the working environment which does not ruin the examination and the performance efficiency. Materials and Methods: The process of the nuclear tests in vivo using a radioactive isotope consists of radioisotope distribution, a radioisotope injection ($^{99m}Tc$, $^{18}F$-FDG), and scanning and guiding patients. Using a measuring instrument of RadEye-G10 gamma survey meter (Thermo SCIENTIFIC), the exposure doses in each working stage are measured and evaluated. Before the radioisotope injection the patients are explained about the examination and educated about matters that require attention. It is to reduce the meeting time with the patients. In addition, workers are also educated about the outside exposure and have to put on the protected devices. When the radioisotope is injected to the patients the exposure doses are measured due to whether they are in the protected devices or not. It is also measured due to whether there are the explanation about the examination and the education about matters that require attention or not. The total exposure dose is visualized into the graph in using Microsoft office excel 2007. The difference of this doses are analyzed by wilcoxon signed ranks test in using SPSS (statistical package for the social science) program 12.0. In this case of p<0.01, this study is reliable in the statistics. Results: It was reliable in the statistics that the exposure dose of injecting $^{99m}Tc$-DPD 20 mCi in wearing the protected devices showed 88% smaller than the dose of injecting it without the protected devices. However, it was not reliable in the statistics that the exposure dose of injecting $^{18}F$-FDG 10 mCi with wearing protected devices had 26% decrease than without them. Training before injecting $^{99m}Tc$-DPD 20 mCi to patient made the exposure dose drop to 63% comparing with training after the injection. The dose of training before injecting $^{18}F$-FDG 10 mCi had 52% less then the training after the injection. Both of them were reliable in the statistics. Conclusion: In the examination of using the radioisotope $^{99m}Tc$, wearing the protected devices are more effective to reduce the exposure dose than without wearing them. In the case of using $^{18}F$-FDG, reducing meeting time with patients is more effective to drop the exposure dose. Therefore if we try to protect workers from radioactivity according to each radioisotope characteristic it could be more effective and active radiation shield from radioactivity.

  • PDF

Analysis of the Distributional Effects of Radioactive Materials on External Gamma Exposure (방사성물질의 분포특성에 따른 외부 감마피폭해석)

  • Han, Moon-Hee;Kim, Eun-Han;Suh, Kyung-Suk;Hwang, Won-Tae;Choi, Young-Gil
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.211-218
    • /
    • 1998
  • The distributional effects of radioactive materials on external gamma exposure have been analyzed. An approximate method for estimating external gamma dose given from an arbitrary distribution of radioactive material has been developed. The minimum gamma exposure given from a point source is shown at 0.07 MeV if the source to receptor distance is shorter than 10 m. But if the receptor to point source distance is longer than 20 m, gamma exposure rate increases monotonously according to the average gamma energy. For the analysis of the effects of volume source, we estimated the gamma dose given from different size of hemisphere in which radioactive materials are distributed uniformly. When the radius of hemisphere is longer than 40 m, external gamma dose rate increases monotonously. The gamma dose rate given from the radioactive materials deposited on the ground shows the minimum value at 0.07 MeV in any case. The analysis shows that external gamma exposure is strongly dependent on the distribution of radioactive materials in the environment and gamma energy.

  • PDF

Analyze dosimetry with and without shielding when amplifying scattered rays (산란선 증폭시 차폐체 유무에 따른 선량 분석)

  • Chang Ho Cho;Jeong Lae Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.819-825
    • /
    • 2024
  • The reason for recording dose data when using a diagnostic radiation source is to record and manage the dose to healthcare personnel and patients. The purpose of this study was to verify the difference in radiation dose when using diagnostic radiation generating devices and to inform users' awareness of dose reduction through measurement and analysis of dose in situations with and without shielding. The dose analysis of each equipment for two Korean C-arms and two German C-arms showed that the Korean FPD type C-arm had the highest dose value, followed by the German I.I type C-arm, German FPD type C-arm, Korean, and I.I type C-arm. The results of the dose analysis with and without shielding showed that the dose to the human phantom in a normal atmosphere increased by about 2 times due to scattered radiation, but the dose to the human phantom was reduced by about 5 times by wearing a shield (0.5mm/lead apron). More important than the management of radiation dose is the study of how to reduce exposure when using radiation, and since the radiation dose output from different equipment is different, it is necessary to provide dose information with and without shielding.

Radiation Exposure on Radiation Workers of Nuclear Power Plants in Korea : 2009-2013 (국내 원전 종사자의 방사선량 : 2009-2013)

  • Lim, Young-khi
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • Although the perfomance indicators of the nuclear power plants in Korea show optimal, it requires detailed analysis and discussion centered on the radiation dose. As analysis methods, analysis on the radiation dose of nuclear power plants over the past five years was assessed by comparing the relevant radiation dose of radiation workers and per capita average annual radiation dose of the world's major nuclear power stations was also analyzed. The radiation workers over the annual radiation dose limit of 50 mSv were not. The contrast ratio of the radiation exposure according to the reactor type was the normal operation of PHWR was 6.2% higher than those of the PWR. This shows the radiation work of PHWR during normal driving operation is much more than those of PWR. According to the Performance Indicators of the World Association of Nuclear Operator, the annual radiation dose per unit in 2013 showed 527 man-mSv of Korea is the best country among the major nuclear power generating states, the world average was 725 man-mSv. The annual per capita radiation dose is about 80% less than 1 mSv of the public dose limit and also the average per capita dose showed a very low level as 0.82 mSv. Workers in related organizations showed 1.07 mSv, the non-destructive inspection agency workers showed 3.87 mSv. The remarkable results were due to radiation reduced program such as development of radiation shielding and radiation protection. In conclusion, the radiation exposured dose of nuclear power plants workers in Korea showed a trend which is ideally reduced. But more are expected to be difficul and the psychological insecurity against the operation of the nuclear power plants is existed to the residents near the nuclear power plants. So the radiation dose reduction policy and radiation dose follow up study of nuclear power plants will be continously excuted.

A Study on the Individual Radiation Exposure of Medical Facility Nuclear Workers by Job (의료기관 핵의학 종사자의 직무 별 개인피폭선량에 관한 연구)

  • Kang, Chun-Goo;Oh, Ki-Baek;Park, Hoon-Hee;Oh, Shin-Hyun;Park, Min-Soo;Kim, Jung-Yul;Lee, Jin-Kyu;Na, Soo-Kyung;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.9-16
    • /
    • 2010
  • Purpose: With increasing medical use of radiation and radioactive isotopes, there is a need to better manage the risk of radiation exposure. This study aims to grasp and analyze the individual radiation exposure situations of radiation-related workers in a medical facility by specific job, in order to instill awareness of radiation danger and to assist in safety and radiation exposure management for such workers. Materials and Methods: 1 January 2007 to 31 December 2009 to work in medical institutions are classified as radiation workers Nuclear personal radiation dosimeter regularly, continuously administered survey of 40 workers in three years of occupation to target, Imaging Unit beautifully, age, dose sector, job function-related tasks to identify the average annual dose for a deep dose, respectively, were analyzed. The frequency analysis and ANOVA analysis was performed. Results: Imaging Unit beautifully three years the annual dose PET and PET/CT in the work room 11.06~12.62 mSv dose showed the highest, gamma camera injection room 11.72 mSv with a higher average annual dose of occupation by the clinical technicians 8.92 mSv the highest, radiological 7.50 mSv, a nurse 2.61 mSv, the researchers 0.69 mSv, received 0.48 mSv, 0.35 mSv doctors orderly, and detail work employed the average annual dose of the PET and PET/CT work is 12.09 mSv showed the highest radiation dose, gamma camera injection work the 11.72 mSv, gamma camera imaging work 4.92 mSv, treatment and safety management and 2.98 mSv, a nurse working 2.96 mSv, management of 1.72 mSv, work image analysis 0.92 mSv, reading task 0.54 mSv, with receiving 0.51 mSv, 0.29 mSv research work, respectively. Dose sector average annual dose of the study subjects, 15 people (37.5%) than the 1 mSv dose distribution and 5 people (12.5%) and 1.01~5.0 mSv with the dose distribution was less than, 5.01~10.0 mSv in the 14 people (35.0%), 10.01~20.0 mSv in the 6 people (15.0%) of the distribution were analyzed. The average annual dose according to age in occupations that radiological workers 25~34 years old have the highest average of 8.69 mSv dose showed the average annual dose of tenure of 5~9 years in jobs radiation workers in the 9.5 mSv The average was the highest dose. Conclusion: These results suggest that medical radiation workers working in Nuclear Medicine radiation safety management of the majority of the current were carried out in the effectiveness, depending on job characteristics has been found that many differences. However, this requires efforts to minimize radiation exposure, and systematic training for them and for reasonable radiation exposure management system is needed.

  • PDF

Measurement of the Spatial Dose Rates During PET/CT Studies (전신 PET/CT 검사에서 공간선량률 측정)

  • Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.257-260
    • /
    • 2006
  • In order to evaluate the exposure to the radiologic technologists from patients who had been administrated with radiopharmaceuticals, we measured the spatial dose rates at $5{\sim}300\;cm$ from skin surface of patients using an proportional digital surveymeter, 1.5(PET scan) and 4hr(bone scan) after injection. In results, the exposure to the technologists in each procedure was small, compared with the dose limits of the medical workers. However, the dose-response relationships in cancer and hereditary effects, referred to as the stochastic effects, have been assumed linear and no threshold models ; therefore, the exposure should be minimized. For this purpose, the measurements of spatial dose rate distributions were thought to be useful.

  • PDF