• Title/Summary/Keyword: 피폭관리

Search Result 271, Processing Time 0.028 seconds

Measurement of Space Dose Distribution during Exposure Micro Computed Tomography (μ-CT) for Scattering Rays (Micro-CT 촬영 시 발생되는 산란선에 관한 공간선량률 측정)

  • Jung, Hongmoon;Won, Doyeon;Kwon, Taegeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Non-invasive technique CT, called automated computed tomography, is used to detect lesion of a patient when diagnosing human body. Information obtained from CT plays an important role in assembling 3 dimensional images. Recently, new equipment, operated by CT, is required which can be appliable to physical and biological research. In accordance to this quest, micro-CT is invented that produce more detail and concrete information. Images supplied by CT are even more detailed and concrete, so it contributes much to the development of biology and polymer material engineering field. However, there has been little reliable reports regarding measuring information of space dose distribution about exposure dose limit of users operating micro-CT. In addition, little reports regarding space dose distribution of exposure has been known about unwanted diffraction light produced by usage of micro-CT. The exterior of micro-CT is covered by lead, which is for removing exposure of diffraction light. Thus, even if it is good enough to prevent exposure of diffraction light, consistent management of equipment will be required as time goes by and equipment are getting old as well. We measured space dose distribution regarding exposure of diffraction light of users operating micro-CT directly. Therefore, we suggest that proper management should be necessary for users operating micro-CT not to be exposed by unwanted diffraction light.

TLD's Glow Curve and Radiation Exposure Amount Analysis at Environment with/without Magnetic Field Exposure as Time Passing (시간 경과에 따른 자기장 노출 유·무 환경에서 열형광선량계의 글로우 곡선 및 피폭 방사선량 분석)

  • Lee, Jae-Heon;Ko, Seong-Jin;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.419-426
    • /
    • 2016
  • The research is done to analyze the change of personal dosimeter according to the elapsed times(24 hours, 1 week, 2 weeks, 3 weeks, 4 weeks) and magnetic field and find out the effective exposure treatment for radiation workers. At first, research the heat treatment and radiation of grouped TLD and keep them in different environments-exposed separately to observe the consequences of glow curve and the level of radiation exposure. As a result, we could find that 24 hours passing TLD group showed the difference in glow curve and the level of radiation. This can be considered as the change caused by magnetic exposure. Also the average radiation exposure level of TLD group, unexposed to the magnetic field, was 15.41 mSv. And the average radiation exposure level of TLD group, exposed to the magnetic field, was 14.83 mSv which decreased the biggest amount(3.80%) among the other groups. If a radiation worker, who works in PET-MRI room, uses TLD as a personal dosimeter, the level of real radiation exposure caused by exposure to the magnetic field won't change significantly as recorded at a regular record cycle but with not regular record but interim record, the lower exposure dose will be appeared than the real level of radiation.

Medical Radiation Exposure Dose of Workers in the Private Study of the Job Function (의료기관 방사선 종사자의 직무별 개인피폭선량에 관한 연구)

  • Kang, Chun-Goo;Oh, Ki-Baek;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.3-12
    • /
    • 2011
  • Purpose: With increasing medical use of radiation and radioactive isotopes, there is a need to better manage the risk of radiation exposure. This study aims to grasp and analyze the individual radiation exposure situations of radiation-related workers in a medical facility by specific job, in order to instill awareness of radiation danger and to assist in safety and radiation exposure management for such workers. Materials and Methods: From January 1, 2010 December 31, 2010, medical practitioners working in the radiation is classified as a regular personal radiation dosimetry, and subsequently one year 540 people managed investigation department to target workers, dose sectional area, working period, identify the job function-related tasks for a deep dose, respectively, the annual average radiation dose were analyzed. Frequency analysis methods include ANOVA was performed. Results: Medical radiation workers in the department an annual radiation dose of Nuclear and 4.57 mSv a was highest, dose zone-specific distribution of nuclear medicine and in the 5.01~19.05 mSv in the high dose area distribution showed departmental radiation four of the annual radiation dose of Nuclear and 7.14 mSv showed the highest radiation dose. More work an average annual radiation dose according to the job function related to the synthesis of Cyclotron to 17.47 mSv work showed the highest radiation dose, Gamma camera Cinema Room 7.24 mSv, PET/CT Cinema Room service is 7.60 mSv, 2.04 mSv in order of intervention high, were analyzed. Working period, according to domain-specific average annual dose of radiation dose from 10 to 14 in oral and maxillofacial radiology practitioners as high as 1.01~3.00 mSv average dose showed the Department of Radiology, 1-4 years, 5-9 years, respectively, 1.01 workers~8.00 mSv in the range of the most high-dose region showed the distribution, nuclear medicine, and the 1-4 years, 5-9 years 3.01~19.05 mSv, respectively, workers of the highest dose showed the distribution of the area in the range of 10 to 14 years, Workers at 15-19 3.01~15.00 mSv, respectively in the range of the high-dose region were distributed. Conclusion: These results suggest that medical radiation workers working in Nuclear Medicine radiation safety management of the majority of the current were carried out in the effectiveness, depending on job characteristics has been found that many differences. However, this requires efforts to minimize radiation exposure, and systematic training for them and for reasonable radiation exposure management system is needed.

  • PDF

Practical Radiation Safety Control: (I) Application of Annual Limit on Intake and Derived Air Concentration (방사선안전관리 실무: (I) 연간섭취한도와 유도공기중농도의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.234-236
    • /
    • 2013
  • Some of radioactive contamination is unavoidable in the facilities using the unsealed radioactive material. The primary purpose of radioactive contamination control in the workplace with contamination concern is the effects from the potential intake of radioactive material into the body. This paper provides procedures to estimate the level of internal exposure for the worker based on the conservative assumptions and simple calculations. They consist of two processes; to calculate air concentration of radioactive material and annual intake by inhalation with contaminated air and to compare each of them to Derived Air Concentration and Annual Limit on Intake mentioned in the related notification. The procedures are applicable to make a decision on practical requirements for monitoring air contamination and internal exposure of worker as follows; needs for measurement of air contamination and internal exposure and acquisition of information on the design of the ventilation system.

Evaluation on Safety of Two-bed Therapy Rooms (2인용 치료병실 안전성 평가)

  • Lee, Kyung-Jae;Cho, Hyun-Duck;Oh, Chang-Bum;Ko, Kil-Man;Park, Young-Jae;Lee, In-Won;Ahn, Hee-Yong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2011
  • Purpose: Europe and U.S use multi-bed therapy rooms. Hereupon, this study aims to examine the safety when current one-bed therapy rooms in Seoul National University Hospital is changed into two-bed ones. Materials and Methods: This study evaluated external exposure by gamma radiation emitted from other patients and internal and external exposure caused by pollutions from other patients in case that Seoul National University Hospital installs a shielding wall between beds in existing therapy rooms. Results: When internal and external exposure was evaluated to evaluate safety of two-bed hospital rooms, 'isolation amount of patients' 5mSv exposure or below is received according to the Atomic Energy Act. Conclusion: With the increasing number of patients with thyoid cancer, patients using therapy rooms are on the rise. Therefore, improving one-person therapy rooms to two-person ones in line with international trend would increase cost reduction and management efficiency, and patients' alienation and isolation can be reduced to increase healing effects.

  • PDF