• Title/Summary/Keyword: 피질골 두께

Search Result 64, Processing Time 0.027 seconds

Evaluation of Insertion of torque and Pull-out strength of mini-screws according to different thickness of artificial cortical bone (다양한 교정용 미니 스크류의 인공 피질골 두께에 따른 삽입 토오크와 Pull-out 강도 비교)

  • Song, Young-Youn;Cha, Jung-Yul;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.5-15
    • /
    • 2007
  • Objective: The purpose of this study was to evaluate the mechanical performance of mini-screws during insertion into artificial bone with use of the driving torque tester (Biomaterials Korea, Seoul, Korea), as well as testing of Pull-out Strength (POS). Methods: Experimental bone blocks with different cortical bone thickness were used as specimens. Three modules of commercially available drill-free type mini-screws (Type A; pure cylindrical type, Biomaterials Korea, Seoul, Korea, Type B; partially cylindrical type, Jeil Medical, Seoul, Korea, Type C; combination type of cylindrical and tapered portions, Ortholution, Seoul, Korea), were used. Results: Difference in the cortical bone thickness had little effect on the maximum insertion torque (MIT) in Type A mini-screws. But in Type B and C, MIT increased as the cortical bone thickness Increased. MIT of Type C was highest in all situations, then Type B and Type A in order. Type C showed lower POS than Type A or B in all situations. There were statistically significant correlations between cortical bone thickness and MIT, and POS for each type of the mini-screws. Conclusion: Since different screw designs showed different insertion torques with increases in cortical bone thickness, the best suitable screw design should be selected according to the different cortical thicknesses at the implant sites.

Cortical bone strain during the placement of orthodontic microimplant studied by 3D finite element analysis (3차원 유한요소법을 이용한 교정용 마이크로임플란트 식립 시의 피질골 스트레인 해석)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.228-239
    • /
    • 2008
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion. Methods: A 3D finite element method was used to model the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) Into 1 mm thick cortical bone with a pre-drilled hole of 0.9 mm in diameter. A total of 1,800 analysis steps was used to simulate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, was observed in the bone along the whole length of the microimplant. At the bone in the vicinity of the screw tip, strains of higher than 100% was recorded. The insertion torque was calculated at approximately 1.2 Ncm which was slightly lower than those measured from the animal experiment using rabbit tibias. Conclusions: The insertion process of a microimplant was successfully simulated using the 3D finite element method which showed that bone strains from a microimplant insertion might have a negative impact on physiological remodeling of bone.

Correlations between the group velocity of time-reversed Lamb waves and cortical bone properties in tibial cortical bone in vivo (생체 내 경골의 피질골에서 시간역전 램파의 군속도와 피질골 특성 사이의 상관관계)

  • Kang Il Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.559-564
    • /
    • 2023
  • It is known that change in the bone strength of cortical bone constituting the outer shell of long bones such as the tibia or radius due to aging and osteoporosis is a risk factor for fracture. In this study, the group velocity of time-reversed Lamb waves generated in tibial cortical bone in vivo was measured using a time reversal method, and the correlations of the group velocity with the cortical bone thickness (cTh) and cortical bone mineral density (cBMD) closely related to the bone strength were investigated. It was found that the group velocity of time-reversed Lamb waves measured in the right tibia of 7 subjects showed a very high correlation, r = 0.90 (p < 0.0001), with the cTh and a relatively low correlation, r = 0.69 (p < 0.0001), with the cBMD. A limitation of this in vivo study is that the group velocity of time-reversed Lamb waves was measured for a normal group consisting of only 7 healthy adults. In the future, if the clinical usefulness of the time-reversed Lamb wave is demonstrated by follow-up studies on normal and osteoporotic groups consisting of a large number of healthy adults and osteoporotic patients, respectively, it is expected to improve the reliability of quantitative ultrasound technology for osteoporosis diagnosis. In addition, it is necessary to expand the skeletal site for measuring the group velocity of time-reversed Lamb waves not only to the tibia but also to the femur or radius.

Cortical bone thickness and root proximity at mandibular interradicular sites: implications for orthodontic mini-implant placement (하악의 교정용 미니 임플랜트 식립 부위에서의 피질골 두께와 치근간 거리: 3차원으로 재구성한 CT 영상을 이용한 연구)

  • Lim, Ju-Eun;Lim, Won-Hee;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.397-406
    • /
    • 2008
  • Objective: The purpose of this study was to provide clinical guidelines to indicate the best location for mini-implants as it relates to the cortical bone thickness and root proximity. Methods: CT images from 14 men and 14 women were used to evaluate the buccal interradicular cortical bone thickness and root proximity from mesial to the central incisor to the 2nd molar. Cortical bone thickness was measured at 4 different angles including $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$. Results: There was a statistically significant difference in cortical bone thickness between the second premolar/first permanent molar site, central incisor/central incisor site, between the first/second permanent molar site and in the anterior region. A statistically significant difference in cortical bone thickness was also found when the angulation of placement was increased except for the 2 mm level from the alveolar crest. Interradicular spaces at the 1st/2nd premolar, 2nd premolar/1st permanent molar and 1st/2nd permanent molar sites are considered to be wide enough for mini-implant placement without root damage. Conclusions: Given the limits of this study, mini-implants for orthodontic anchorage may be well placed at the 4 and 6 mm level from the alveolar crest in the posterior region with a $30^{\circ}$ and $45^{\circ}$ angulation upon placement.

MECHANICAL AND HISTOMORPHOLOGIC CHANGES OF THE RAT FEMUR AFTER ADMINISTRATION OF SODIUM FLUORIDE (불화물에 의한 백서 대퇴골의 강도 및 조직형태학적인 변화)

  • Lee, Soo-Koung;Song, Keun-Bae;Jang, Hyun-Jung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.4
    • /
    • pp.363-368
    • /
    • 2000
  • The purposes of the study was to examine changes in thickness and strength of the rat femur after administration of sodium fluoride in the drinking water. 48 female Sprague-Dawley rats were randomly divided into 4 groups, and they were supplied with 0(control), 1, 5 and 50 ppm of fluoride in the drinking water ad libitum for 6 weeks. Rats were killed and both sides of femur were dissected. Bone strength was measured as the stress of failure of femur at the middle point and femoral neck with Instron. Histologic slides were prepared from the femur shaft with routine processing of fixing, demineralizing, embedding and HE staining. Thickness and area of cortical bone and medullary cavity were measured by using Camera Lucida and Image Analyzer. All the collected data were analyzed with one-way ANOVA, Duncan's multiple range test for post-hoc tests and ANCOVA using the SAS 6.12 package at the level of 0.05. Bone strength increased significantly in the animals given 1 and 5 ppm of fluoride in the water, as compared to the control group. There were significant decreases of stress at fracture in 50 ppmF group compared to the 1 and 5 ppmF groups. The similar trends of bone strength at the femoral neck fracture test, but there were no statistical significances. Cortical bone thickness and area of the femur increased in the 1 and 5 ppmF groups compared to the control. However, the thickness of 50 ppmF group also decreased significantly as compared to 1 and 5 ppmF groups. On the other hand, medullary thickness and area increased in all fluoride groups than control group. All of the findings presented support the conclusion that, low fluoride dosage used in water fluoridation could increase the bone strength and might have preventive effect on femur fracture.

  • PDF

The validation of Periotest values for the evaluation of orthodontic mini-implants' stability (즉시 부하 교정용 미니임플랜트의 안정성 평가를 위한 Periotest$^{(R)}$의 유효성)

  • Cha, Jung-Yul;Yu, Hyung-Seog;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.40 no.3
    • /
    • pp.167-175
    • /
    • 2010
  • Objective: The aim of this study was to validate the Periotest values for the prediction of orthodontic mini-implants' stability. Methods: Sixty orthodontic mini-implants (7.0 mm $\times$ $\emptyset1.45$ mm; ACR, Biomaterials Korea, Seoul, Korea) were inserted into the buccal alveolar bone of 5 twelve month-old beagle dogs. Insertion torque (IT) and Periotest values (PTV) were measured at the installation procedure, and removal torque (RT) and PTV were recorded after 12 weeks of orthodontic loading. To correlate PTV with variables, the cortical bone thickness (mm) and bone mineral density (BMD) within the cortical bone and total bone area were calculated with the help of CT scanning. Results: The BMD and cortical bone thickness in mandibular alveolus were significantly higher than those of the maxilla (p < 0.05). The PTV values ranged from -3.2 to 4.8 for 12 weeks of loading showing clinically stable mini-implants. PTV at insertion was significantly correlated with IT (-0.51), bone density (-0.48), cortical bone thickness (-0.42) (p < 0.05) in the mandible, but showed no correlation in the maxilla. PTV before removal was significantly correlated with RT (-0.66) (p < 0.01) in the mandible. Conclusions: These results show that the periotest is a useful method for the evaluation of mini-implant stability, but it can only be applied to limited areas with thick cortical and high density bone such as the mandible.

Finite element analysis of cortical bone strain induced by self-drilling placement of orthodontic microimplant (Self-drilling 방식의 마이크로임플란트 식립에 의해 발생하는 피질골 스트레인의 유한요소해석)

  • Park, Jin-Seo;Yu, Won-Jae;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.203-212
    • /
    • 2009
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion in a self-drilling manner. Methods: A 3D finite element method was used to simulate the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) into 1 mm thick cortical bone. The shape and dimension of thread groove in the center of the cortical bone produced by the cutting flute at the apical of the microimplant was obtained from animal test using rabbit tibias. A total of 3,600 analysis steps was used to calculate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, were observed in the peri-implant bone along the whole length of the microimplant. Level of strains in the vicinity of either the screw tip or the valley part were similar. Conclusions: Bone strains from a microimplant insertion in a self-drilling manner might have a negative impact on the physiological remodeling of cortical bone.

Influence of Cortical Endplates on Ultrasonic Properties of Trabecular Bone (피질골판이 해면질골의 초음파 특성에 미치는 영향)

  • Kim, Yoon Mi;Lee, Kang Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.103-111
    • /
    • 2015
  • The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 MHz and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

New Diagnostic Clues of Non-ossifying Fibroma and Fibrous Cortical Defect (비골화성 섬유종 및 섬유성 피질골 결손의 새로운 진단적 소견)

  • Cho, Jae-Hyun;Lee, Kyi-Beom;Suh, Jung-Ho;Kim, Dae-Woong;Kim, Byoung-Suck
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.5 no.3
    • /
    • pp.155-161
    • /
    • 1999
  • This study was performed to document the morphologic relationships between non-ossifying fibroma (NOF) and fibrous cortical defect (FCD), as well as to determine any new diagnostic clues. Eighteen patients with 21 NOFs and 14 patients with 15 FCDs found incidentally on radiography were included. The authors prospectively performed CT, MRI, or both on all subjects. The study included size, location, sclerotic property and contour of the periphery, as well as calcification of the matrix of the lesions and the distance from the lesion to the growth plate. The morphologic characteristics were thoroughly reviewed focusing on the presence of the cortical tract in the lesions. The size of the lesion and the distance from the growth plate were not correlated with the patient' age. The presence of the cortical tract was noted in 18(85.7%) out of 21 NOFs, and 10(66.7%) out of 15 FCDs. The presence of the cortical tract was correlated with the longitudinal length of the lesion and the distance from the growth plate. The presence of the cortical tract may be one of the important characteristics in NOF and FCD, and if the diagnosis of bony lesions is obscure by radiologic finding, its exsitence may be a good indicator of diagnosis for NOF or FCD.

  • PDF

THE LIMITATION OF ALVEOLAR BONE REMODELING DURING RETRACTION OF THE UPPER ANTERIOR TEETH (상악 전치부 견인 시 치아이동에 따른 전방 치조골개조량의 변화에 관한 연구)

  • Hwang, Chung-Ju;Moon, Jeong-Lyon
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.97-105
    • /
    • 2001
  • In many cases of orthodontic treatment the upper anterior teeth are retracted. Periodontal problems may arise during incisor retraction, if the amount of tooth movement and the amount of remodeling in the anterior cortical bone are not the same. Therefore in this study, to find out the relationship between the amount of tooth movement and the amount of bone remodeling during retraction of the upper anterior teeth, lateral cephalograms of 56 female patients over 18-year-old were taken before and after treatment. Among the 56 patients, two groups were divided according to the type of root movement during retraction. 26 patients mainly moved by tipping and 30 by bodily movement. The cephalograms taken before and after treatment were superimposed upon the true horizontal plane. In the Tip-Group, the horizontal bone remodeling/tooth movement ratio was 1:1.63, and in the Torque-Group it was 1:1.66. Because the amount of tooth movement and the amount of bone remodeling were not the same in both groups, in the Tip-Group the root apex moved away from the palatal cortical plate and closer to the labial cortical plate, whereas in the Torque-Group the root moved away from the labial cortical plate and closet to the palatal cortical plate. Therefore, there are limitations in the amount of incisor retraction in patients with a very thin anterior cortical plate in the maxilla, and in patients with severe skeletal discrepancies orthognathic surgery should be considered and when orthodontic camouflage treatment is the only possible method, the orthodontist must be aware of the limitations of treatment.

  • PDF