• Title/Summary/Keyword: 피복재료

Search Result 326, Processing Time 0.029 seconds

Modeling and Parametric Studies on Moment-Curvature Relation of a Reinforced Concrete Column Subject In Axial-toad and Bi-Axil Moment (축하중과 이축모멘트를 받는 철근콘크리트 기둥의 모멘트-곡률에 관한 모델링 및 변수고찰)

  • 이차돈;최기봉;차준실;김성진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.677-688
    • /
    • 2002
  • A analytical model is developed which can simulate a complete inelastic biaxial moment-curvature relations of a reinforced concrete column. The model can simulate sudden drop in moment capacity after peak moment and due to spalling of cover concrete. Parametric studies are performed examine the effects of constituent material properties as well as topological arrangement of reinforcements on moment-curvature relations and P-M interaction curve. It has been analytically observed that ductility of a reinforced concrete column is influenced mostly by magnitude of the axial load and spacings or the volume of lateral reinforcements. Compared to ACI P-M interaction curve, overall increase about 10% in square root of sum of squares of axial force and moment, and about 20% in peak load are observed for the columns reinforced according to ACI seismic design code.

Tension Stiffening Effect and Crack Behavior of Tension Members Using High Strength Concrete (고강도 콘크리트 인장부재의 인장강화효과와 균열거동)

  • Kim, Jee-Sang;Park, Chan Hyuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • The verification of serviceability of concrete structures requires more informations on the composite behaviors between concrete and reinforcement. Among them, the investigation of crack widths and spacings is based on the tension stiffening effects. In this paper, the tension stiffening effects of high strength concrete members with compressive strength of 80 and 100MPa are investigated experimentally. It was found that the current design code which is based on the tests of normal strength concrete may not describe the tension stiffening effects in high strength concrete correctly. The coefficient that can appropriately reflect the tension stiffening effects in the high strength concrete was proposed. Also, the crack spacing was investigated through the cracking behaviors and the crack width according to the difference of the strains in steel and concrete was estimated. The results of this paper may be used to examine the tension stiffening effects of high strength concrete members.

3D Flow Simulation in the Meandering Natural Channel (사행 자연수로에서의 3차원 흐름 모의)

  • Son, Min-Woo;Baek, Kyoung-Oh;Kim, Sang-Ug
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1661-1665
    • /
    • 2006
  • In a natural river, cross sections of a channel vary according to inner or outer parts of meandering. Generally, depth of outer parts is deeper than that of inner parts. This kind of cross section change by meandering can be demonstrated by Beta distribution. The objects of this research is a 3D simulation of primary and secondary flow in the meandering natural channel. FLOW-3D program, a numerical model using CFD technique, and LES method was used for this research. 3D simulations were conducted in the channels having Beta distribution cross sections which have beds of mortar, gravel and vegetation. Two types of water stages and discharge were applied to each channel. In this research, primary flows are located in the outer parts of a top of bend and secondary flows rotate in the bottom on outer parts.

  • PDF

Failure Analysis of LV URD Cable based on FMEA (FMEA에 근거한 LV URD 케이블의 고장분석)

  • Shong, Kil-Mok;Han, Woon-Ki;Kim, Young-Seok;Kim, Sun-Gu;Kwak, Hee-Ro
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.90-98
    • /
    • 2007
  • The objective of this investigation was to reveal the cause of the faulted cable(LV URD(low voltage underground) cable). For the analysis, various types or equipments such as external pattern, thermal pattern, surface structure, thermal analysis, and property distribution were deployed. The international standards and the specification provided by the manufacturer of faulted cable were examined whether it fit the standards. The summary is as follows. (1) Discovered as a factor lowering insulation performance of the faulted cable: minimum thickness of the insulation layer specified by IEC 60502-1 and IEC 60811-1-1 was not fit. (2) Infrared absorption peaks measured by FT-IR spectrometer revealed that the measurements made for the same material did not conform and it is an important basis for proving heterogeneous composition of the insulation material. (3) It was found that PVC bedding was thermally fragile and therefore long term exposure at the site could cause similar fault pattern.

Bond Strength of Reinforcing Steel to High-Performance Concrete Using Belite Cement (고성능 Belite 시멘트 콘크리트의 철근 부착성능)

  • Kim, Sang-Jun;Cho, Pil-Kyu;Hur, Jun;Choi, Oan-Chul
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.169-178
    • /
    • 1998
  • Bond strength of reinforcing bar to high-perfomance concrete using belite cement is explored using beam end test specimens. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete cover. The test results show that the specimens with belite cement concrete show approximately 10% higer bond strength than those with portland cement concrete. The results also show that the bond strength from the high strength concrete is function of the square root of concrete compressive strength. Bond strength of the top bar is less than bond strength of bottom bar, but the ratios of the bond strength of bottom-cast bars to those for top-cast bars are much less than the modification factor for top reinforcement found in the ACI 318-95 code. Comparisons with other reported tests identified that belite cement increased bond strength while silica fume or flyash used in high strength concrete decreased bond strength. The high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

Serviceability Verification Based on Tension Stiffening Effect in Structural Concrete Members (인장증강효과에 기반한 콘크리트 구조 부재의 사용성능 검증)

  • Lee, Gi-Yeol;Kim, Min-Joong;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2012
  • This paper is about proposal of a calculation method and development of an analytical program for predicting crack width and deflection in structural concrete members. The proposed method numerically calculate stresses in steel rebar using a parabola-rectangle stress-strain curve and a modified tension stiffening factor considering the effect of the cover thickness. Based on the study results, a calculation method to predict crack width and deflection in reinforced concrete flexural members is proposed utilizing effective tension area and idealized tension chord as well as effective moment-curvature relationship considering tension stiffening effect. The calculation method was applied to the test specimens available in literatures. The study results showed that the crack width and deflections predicted by the proposed method were closed to the experimentally measured data compared the current design code provisions.

Development of Analysis Method and Experimental Equipment for Fatigue Durability of Automotive Wire Harness System (자동차 와이어 하네스 피로내구 해석 방법론 및 시험기기 개발)

  • Lee, Heung-Shik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • In this study, the methodology for the fatigue life prediction using finite element method(FEM) in wire, bundle and assembly level of the wire harness system and the development of the fatigue life test machine for the numerical analysis are investigated. To obtain stress-life(S-N) histories of the componential wires of the system, five kinds of wires are prepared and applied to the repeated bending motion using developed fatigue life test equipment. Equivalent model of the wire from the rule of mixtures theory is used for the material modeling of sheath and wire core combination. Contact conditions among the wires, taping conditions are established through the bundle level test and numerical bundle analysis. Wire and bundle level results are adopted for the assembly level analysis. For the assembly level analysis, real wire harness system including bundle and grommet is numerically modeled and applied contact condition between wires with real opening motion. The fatigue life more than 700,000 cycles of the assembly is obtained from the FEM, and it is confirmed that the result has good agreement with the experimental result.

Trends of Research and Practical Use on Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete (고강도콘크리트의 폭렬대책공법에 대한 국내외 현황과 성능적 구조내화설계를 위한 과제)

  • Kwon, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.935-940
    • /
    • 2008
  • When reinforced concrete is subjected to high temperature as in fire, there is deterioration in its properties of particular importance are loss in compressive strength, cracking and spalling of concrete, destruction of the bond between the cement paste and the aggregates and the gradual deterioration of the hardend cement paste. Assessment of fire-damaged concrete usually starts with visual observation of color change, cracking and spalling of the surface. In this paper, it was reported the trends of research and practical use on the Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete.

  • PDF

An Electrochemical Evaluation of the Corrosion Property on the Welded Zone of Sea Water Pipe according to Welding Materials (용접 재료 별 해수 배관 용접부위의 부식 특성에 관한 전기화학적 평가)

  • Kim, Jin-Gyeong;Won, Chang-Uk;Jo, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Moon, Kyung-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • The sea water pipe of a ship's engine room is a severely corrosive environment caused by fast flawing sea water containing chloride ions and high conductivity. Therefore, leaking of sea water may occur as a result of local corrosion of the welded zone. Leaking is usually controlled by various welding methods. In this study, when the sea water pipe is welded with certain welding methods and welding electrodes, the corrosion resistance of WM (Welding metal) and HAZ (Heat affected zone) was investigated using electrochemical methods. Although the corrosion potential of the HAZ is higher than that of WM, the corrosion resistance of WM is superior to HAZ. However, when WM and HAZ are both opened to the sea water, the WM part with the anode was more seriously corroded than was the HAZ of the cathode by performance of a galvanic cell due to difference of the corrosion potential between HAZ and WM. In particular TIG welding showed relatively good results in corrosion resistance of both HAZ and WM compared to other welding methods.

Optimum Design of Greenhouse Roof Shape Using Genetic Algorithms - In Reference to Light Transmissivity - (유전알고리즘을 이용한 온실지붕 형상의 최적설계 - 광투과율을 중심으로 -)

  • 김문기;박우식
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.290-297
    • /
    • 1998
  • In this study an optimization of greenhouse roof shape was performed to maximize solar light transmission which is one of the most important elements in greenhouse environment. To determine roof shape that maximize the total light transmissivity, a computer model for analysing light transmissivity was composed and the Genetic Algorithms was applied for solving optimization problems. By setting composite model as objective function(fitness function), the optimum combination of design variables(roof inclination angle, width ratio) was searched using Genetic Algorithms. The optimum combination of input variables for the maximum light transmissivity at Suwon in winter was found 40 degree root angle , 0.5 width ratio, for two span greenhouses and 37 $_。 / roof angle, 0.7 width ratio, for single span greenhouses.es.

  • PDF