• Title/Summary/Keyword: 피로특성

Search Result 1,369, Processing Time 0.028 seconds

Manufacture of 3D Textile Preform and Study on Mechanical Properties of Composites (3D Textile 프리폼 제조 및 복합재료 기계적 특성 연구)

  • Jo, Kwang-Hoon;Klapper, Vinzenz;Kim, Hyeon-Woo;Lee, Jeong-Woon;Han, Joong-Won;Byun, Joon-Hyung;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • The aircraft composites wing parts are usually integrated with adhesive or fastener. These laminated composites have weak interlaminar strength, which can lead to delamination. In order to compensate the disadvantages of laminated composites, it is possible to improve the strength, durability, shock and fatigue resistance by reinforcing the fiber in the thickness direction. In addition, using a single structure near-net-shape saves the manufacturing time and the number of fasteners, thus can reduce the overall cost of the composite parts. In this study, compression test, tensile test and open-hole tensile test are carried out for three structural architecture of 3D (three-dimensional) textile preforms: orthogonal(ORT), layer-to-layer(LTL) and through-the-thickness(TTT) patterns. Among these, the orthogonal textile composite shows the highest Young's modulus and strength in tensile and compression. The notch sensitivity of the orthogonal textile composite was the smallest as compared with UD (unidirectional) and 2D (two-dimensional) fabric laminates.

A Study on Vortex-Induced Vibration Characteristics of Hydrofoils considering High-order Modes (고차모드를 고려한 수중날개 와류기인 진동특성 연구)

  • Choi, Hyun-Gyu;Hong, Suk-Yoon;Song, Jee-Hun;Jang, Won-Seok;Choi, Woen-Sug
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.377-384
    • /
    • 2022
  • Vortex-induced vibration (VIV) occurs owing to the vortex generated from the back side of the appendages of ships and submarines during operation. Recently, the importance of high-order modes (HOMs) vibration and fatigue failure has become increasingly emphasized by increasing the speed of ships and the size of structures. In addition, predicting the vibration of HOMs is significantly necessary as the VIV becomes stronger in the fast flow speed condition than in the low flow speed condition. This study introduces a methodology according to HOMs hybrid Fluid Structure Interaction (FSI) for predicting the HOMs VIV on the hydrofoils. The HOMs FSI system is verified by comparing the VIV results from the FSI simulation with the experimental results. Finally, the effectiveness of the HOMs FSI is determined by applying the maximum von-Mises stress obtained from the VIV on the hydrofoil to the S-N curve released from Det Norske Veritas (DNV). VIV results from the HOMs FSI include the lock-in characteristics as well as a significant increase of more than 10 times compared with that of low-order modes (LOMs) FSI. In the future works, advanced studies will be required for improving cantilever boundary conditions and the shape of hydrofoils.

Development and Effects of Health Promotion Education Program for the Auxiliary Police - Based on the PRECEDE-PROCEED Model - (PRECEDE-PROCEED 모형을 적용한 의무경찰의 건강증진교육프로그램의 개발 및 효과)

  • Kim, Young-jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.115-131
    • /
    • 2022
  • The purpose of this study was to develop and examine the effect of the Health Promotion Education Program for the Auxiliary Police based on the PRECEDE-PROCEED Model. This study was conducted using a nonequivalent control group pretest-posttest design. Twenty-five participants were selected by convenience sampling method and assigned to the experimental group, and 26 participants were assigned to the control group. The data were collected from Auxiliary Police officer in D provincial Police Agency. All of participations completed questionnaires about self-efficacy, social support, availability of resources, health promotion behavior, quality of life and received the objective stress test. In addition, the experimental group completed 7 sessions of health promotion Education programs according to PRECEDE-PROCEED model for 5 weeks. Data were analyzed using the SPSS/WIN 21.0 Program. There was significant differences over time between the groups in terms of health promotion behavior (F=7.63, p<.001), autonomic nervous activity (F=29.24, p<.001), stress resistance (F=31.22, p<.001), stress index (F=22.42, p<.001), fatigue (F=12.87, p<.001), and quality of life (F=3.49, p=.042). The results may be crucial to develop strategy in order to decrease the disease prevalence as well as increase the participants' overall quality of life. As a result, the Health Promotion Education Program for the auxiliary police was proved to be an effective intervention in order to improve the quality of life. Therefore, the program may be a useful intervention for the auxiliary police.

Fabrication and Characterization of Lactate Oxidase-catalase-mitochondria Electrode (젖산 산화효소-카탈라아제-미토콘드리아 전극 제작 및 특성 분석)

  • Ke Shi;Keerthi Booshan Manikandan;Young-Bong Choi;Chang-Joon Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.238-245
    • /
    • 2024
  • The lactate electrode can be utilized either as an electrode for lactate sensor to monitor the patient's health status, stress level, and athlete's fatigue in real time or lactate fuel cell. In this study, we fabricated a high-performance electrode composed of lactate oxidase, catalase, and mitochondria, and investigated the surface analysis and electrochemical properties of this electrode. Carbon paper modified with single-walled carbon nanotubes (CP-SWCNT) had significantly improved electrical conductivity compared to before modification. The electrode to which lactate oxidase, catalase, and mitochondria were attached (CP-SWCNT-LOx-Cat-Mito) produced a higher current than the electrode to which lactate oxidase and catalase were attached. The amount of reduction current produced by the bilirubin oxidase (BOD)-attached electrode (CP-SWCNT-BOD) was greatly affected by the presence or absence of oxygen in the electrolyte. The fuel cell composed of CP-SWCNT-LOx-Cat-Mito (anode) and CP-SWCNT-BOD (cathode) produced maximum power (29 ㎼/cm2) at a discharge current density of 133 ㎂/cm2. From this study, we had proved that mitochondria is essential for improving lactate sensor and fuel cell performance.

Influence of Implant Fixture-Abutment Connection and Abutment Design on Mechanical Strength (임플란트 고정체-지대주 연결부 및 지대주 디자인이 기계적 강도에 미치는 영향)

  • Chun, Mi-Hyun;Jeong, Chang-Mo;Jeon, Young-Chan;Eom, Tae-Gwan;Yoon, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.269-281
    • /
    • 2008
  • Fatigue or overload can result in mechanical problems of implant components. The mechanical strength in the implant system is dependent on several factors, such as screw and fixture diameters, material, and design of the fixture-abutment connection and abutment. In these factors, the last rules the strength and stability of the fixture-abutment assembly. There have been some previous reports on the mechanical strength of the fixture-abutment assembly with the compressive bending test or short-term cyclic loading test. However, it is restrictive to predict the long-term stability of the implant system with them. The purpose of this study was to evaluate the influence of the design of the fixture-abutment connection and abutment on the mechanical strength and failure mode by conducting the endurance limit test as well as the compressive bending strength test. Tests were performed according to a specified test(ISO/FDIS 14801) in 4 fixture-abutment assemblies of the Osstem implant system: an external butt joint with Cemented abutment (group BJT), an external butt joint with Safe abutment (group BJS), an internal conical joint with Solid abutment (group CJO), and an internal conical joint with ComOcta abutment (group CJT). The following conclusions were drawn within the limitation of this study. Compressive bending strengths were decreased in order of group BJS(1392.0N), group CJO(1261.8N), group BJT(1153.2N), and group CJT(1110.2N). There were no significant differences in compressive bending strengths between group BJT and group CJT(P>.05). Endurance limits were decreased in order of group CJO(600N), group CJT(453N), group BJS(360N), and group BJT(300N). 3. Compressive bending strengths were influenced by the connection and abutment design of the implant system, however endurance limits were affected more considerably by the connection design.

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

Characteristics of Flexible Transparent Capacitive Pressure Sensor Using Silver Nanowire/PEDOT:PSS Hybrid Film (은나노와이어·전도성고분자 하이브리드 필름을 이용한 유연 투명 정전용량형 압력 센서의 특성)

  • Ahn, Young Seok;Kim, Wonhyo;Oh, Haekwan;Park, Kwangbum;Kim, Kunnyun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • In this paper, we developed a flexible transparent capacitive pressure sensor which can recognize X and Y coordinates and the size of force simultaneously by sensing a change in electrical capacitance. The flexible transparent capacitive pressure sensor was composed of 3 layers which were top electrode, pressure sensing layer, and bottom electrode. Silver nanowire(Ag NW)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid film was used for top and bottom flexible transparent electrode. The fabricated capacitive pressure sensor had a total size of 5 inch, and was composed of 11 driving line and 19 sensing line channels. The electrical, optical properties of the Ag NW/PEDOT:PSS and capacitive pressure sensor were investigated respectively. The mechanical flexibility was also investigated by bending tests. Ag NW/PEDOT:PSS exhibited the sheet resistance of $44.1{\Omega}/square$, transmittance of 91.1%, and haze of 1.35%. Notably, the Ag NW/PEDOT:PSS hybrid electrode had a constant resistance change within a bending radius of 3 mm. The bending fatigue tests showed that the Ag NW/PEDOT:PSS could withstand 200,000 bending cycles which indicated the superior flexibility and durability of the hybrid electrode. The flexible transparent capacitive pressure sensor showed the transmittance of 84.1%, and haze of 3.56%. When the capacitive pressure sensor was pressed with the multiple 2 mm-diameter tips, it can well detect the force depending on the applied pressure. This indicated that the capacitive pressure sensor is a promising scheme for next generation flexible transparent touch screens which can provide multi-tasking capabilities through simultaneous multi-touch and multi-force sensing.

Analysis of the Correlation between Human Sensibility and Physical Property of luminous Sources -Focused on Response according to Character of Color Temperature by luminous Sources- (건축조명광원의 광학적 특성에 따른 인간의 감성반응 분석 -조명광원별 색온도 특성에 따른 반응을 중심으로-)

  • Lee, Jin-Sook;Oh, Do-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this research is to acquire emotional data on luminous source by measuring and evaluating human emotional response to the change of the optical feature of luminous environment Luminous sources used in actual architectural space were selected with the optical feature of luminous soured then to measure and analysis human emotional response on Luminous Source. As a result of that 1) In the result of performance measurement by the item of the clear vision of an optic function the fluorescent lamp of daylight indicated the most excellent Performance. 2) In the item of fatigue and stress, the metal halide lamp and mercury lamp showed the most 3) In $\ulcorner$ suitable in light$\lrcorner$, $\ulcorner$a similar with daylight$\lrcorner$ adjective of the amenity item the fluorescent lamp of daylight which color temperature was high turned up to be high also, in $\ulcorner$brilliant$\lrcorner$, adjective, the metal halide lamp and mercury lamp turned up to be low. 4) In the result of factor analysis, three factors $\ulcorner$activity$\lrcorner$, $\ulcorner$potency$\lrcorner$, $\ulcorner$evaluation$\lrcorner$ were abstracted and $\ulcorner$activity$\lrcorner$ factor has the most influential on evaluating the mood of interior space. 5) For the affection in the mood evaluation by each luminous sources, $\ulcorner$activity$\lrcorner$ factor was the most influential by metal halide lamp and fluorescent lamp of daylight, $\ulcorner$potency$\lrcorner$ factor was most influential by kind of incandescent lamp, $\ulcorner$evaluation$\lrcorner$ factor was most influential by fluorescent lamp of low color temperature.

The Effect of Fluidized-Bed Variables on Attrition of Solid Particles (유동층 공정변수의 고체입자 마모에 미치는 영향)

  • Moon, Young-Sub;Yi, Chang-Keun;Son, Jae-Ek;Ryu, Chung-Keol;Choi, Jeong-Hoo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.603-608
    • /
    • 2005
  • This study was conducted to investigate particle attrition characteristics in a gas desulfurization using zinc titanate sorbent in a 0.035 m i.d. by 1.34 m height gas fluidized bed reactor. Gas jetting from the distributor and bubbling in the gas fluidized bed were found to be the main causes of particle attrition. The experiment was carried out under a slow attrition rate condition to compare the performance of the batch reactor to that of a continuous reactor. The attrition index (AI) and corrected attrition index (CAI) were measured at various the gas velocity, temperature, pressure, and bed weight, in the gas fluidized bed, during the dexulfurization process. The AI (5) and CAI (5) decreased as the bed weight increased. Particle destruction occurred when the particles started to experience physical fatigue under specific impacts over several iterations. AI (5) and CAI (5) also increased as relative humidity, gas velocity and pressure increased, and as temperature decreased. Particle attrition was mainly affected by gas jetting from the distributor, and abrasion resulted in smaller particles than fragmentation did.

Symptom Clusters in Advanced Cancer Patients (진행암 환자의 증상군)

  • Hwang, Sun Wook
    • Journal of Hospice and Palliative Care
    • /
    • v.16 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • Advanced cancer patients tend to present multiple concurrent symptoms which are often moderate or severe in intensity. To date, the majority of studies have focused on either a single symptom, such as pain, fatigue, or depression or associated symptoms. While this approach has advanced understanding of some symptoms, it has offered clinicians not much guidance for treating several multiple concurrent symptoms in cancer patients. So in recent years, a few symptom management studies attempted a new approach of focusing on symptom clusters instead of individual symptoms. A symptom cluster is defined as two or more concurrent symptoms that are related to each other. If we better understand symptom clusters, interrelations of symptoms, and their common mechanisms in advanced cancer patients, clinicians can more effectively control multiple, concurrent symptoms and reduce drug side effects. And clinicians can also predict any other symptoms, functional performance, and the relationship between symptom clusters and survival in advanced cancer patients. At present, there is inconsistency in symptom clusters due to many unexplained mechanisms and various means to assess and analyze symptoms. Still, with further study, the approach to symptom clusters rather than individual symptoms could more effectively control symptoms and improve patients' quality of life.