• Title/Summary/Keyword: 피로응력

Search Result 1,304, Processing Time 0.026 seconds

Effect of Bandwidth of Random Stresses on Fatigue Life Estimations of Offshore Structures (해양구조물의 피로해석시 랜덤응력의 Bandwidth의 영향)

  • Ryu, Jeong Soo;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.85-91
    • /
    • 1986
  • Fatigue life is an important consideration for the design of offshore structures in deep sea and in hostile environments. In this paper, the effect of the bandwidth of random stresses on the fatigue life estimation of fixed offshore structures is investigated. The dynamic analysis is carried out in the frequency domain by using the equivalent linearization technique. Fatigue damages are calculated by two stress cycle counting methods; i.e., the narrow band method and the wide band method using rainflow counting technique. Example studies are carried out for two different structures. Numerical results indicate that the wide band approach, which is more complex but theoretically more appropriate pridicts smaller values of fatigue damages compared with those by the narrow band approach for all seastate conditions. Such trend becomes more apparent for the cases of severe seastates where the bandwidth of random stresses becomes large.

  • PDF

Reliability Analysis for Fatigue Damage of Steel Bridge Details (강교 부재의 피로손상에 대한 신뢰성 해석)

  • Park, Yeon Soo;Han, Suk Yeol;Suh, Byoung Chal
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.475-487
    • /
    • 2003
  • This study developed an analysis model of estimating fatigue damage using the linear elastic fracture mechanics method. Stress history occurring to an element when a truck passed over a bridge was defined as block loading and crack closure theory explaining load interaction effect was applied. Stress range frequency analysis considering dead load stress and crack opening was done. Probability of stress range frequency distribution was applied and the probability distribution parameters were estimated. The Monte Carlo simulation of generating the probability various of distribution was performed. The probability distribution of failure block numbers was obtained. With this the fatigue reliability of an element not occurring in failure could be calculated. The failure block number divided by average daily truck traffic remains the life of a day. Fatigue reliability analysis model was carried out for the welding member of cross beam flange and vertical stiffener of steel box bridge using the proposed model. Consequently, a 3.8% difference was observed between the remaining life in the peak analysis method and in the proposed analysis model. The proposed analysis model considered crack closure phase and crack retard.

The Effect of Fretting Wear on Fatigue Crack Initiation Site of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로균열 발생 위치에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.546-553
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile by fretting wear on the contact stress distribution and fatigue crack initiation site of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact surface profiles of shaft. The evolutions of contact stress as wearing of contact surface were analyzed by finite element analysis and fatigue crack nucleation sites were evaluated by fretting fatigue damage parameter (FFDP) md multiaxial fatigue criteria. It is found that the stress concentration of a contact edge in press-fitted sha손 decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside due to fretting wear as increasing of fatigue cycles. Thus the transition of crack nucleation position in press-fitted shaft is mainly caused by stress change of a contact edge due to the evolution of contact surface profile by fretting wear. Therefore, it is suggested that the nucleation of multiple cracks on fretted surface of press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

Characteristic and Analysis of Fatigue Crack for Curved Girder Bridge based on the Stress Range Histerisis (실동이력에 기초한 곡선거더교의 피로균열 특성 및 분석)

  • Kwon, Soon Cheol;Kyung, Kab Soo;Kim, Da Young;Lee, Ha Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.1-13
    • /
    • 2008
  • The web of a horizontally curved plate girder bridge is, in general, subject to not only longitudinal flexural in-plane stress but also out-of-plane bending stress. Therefore, the induced stresses in the fillet welded joints at the intersection of the web and flange plates in the curved plate girder bridge can be considerably high, and the welded joints of gusset plates connecting the main girder to the floor beams or sway bracings can be subject to much more severe situation than those in the ordinary straight plate girder bridge. In order to investigate the cause of fatigue crack occurred in a curved girder bridge that has been served in about 23 years, in this study, field load tests have been performed to obtain the stress characteristics at the welded joint under the real traffic flow. Using the test results, we have investigated the causes of the occurrence of various fatigue cracks and have estimated the fatigue lives for the cracks. In addition, the characteristics of structural behavior at welded joint of the curved girder bridge have been examined by comparing the FE analysis and the field test result.

Study on Fatigue Life Estimation for Aircraft Engine Support Structure (항공기 엔진 지지구조물의 피로수명 해석에 관한 연구)

  • Hur, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1667-1674
    • /
    • 2010
  • The fatigue life is estimated while determining the reliability of aircraft structures. In this study, the estimation of fatigue life was carried out on the basis of a cumulative damage theory; the working S-N curve and the equivalent stress on the engine support structure significantly affect the safety of the aircraft. The maximum stress observed was 1,080 MPa in the case of scissors link under crash load condition, and there was a 5% margin for the allowable stress corresponding to the temperature reduction factor. The maximum stress was 876 MPa, and the stress equation coefficient had a maximum value of 0.019 MPa/N in the case of scissors link under fatigue loads. In the results of the fatigue life analysis, the safety life in a fretting area of scissors link upper part was 416,667 flight hour, and other parts showed to infinite life. Therefore, it was demonstrated that the fatigue life requirement of aircraft engine support structure (scissors link, straight link) could be satisfied.

The Fatigue Analysis for the Flexible Tube of Automobile (승용차용 플렉서블 튜브의 피로 해석)

  • Kim, Jin-Bong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.813-816
    • /
    • 2010
  • 본 논문에서는 자동차 배기계를 구성하고 있는 Flexible Tube의 형상에 따른 응력 해석 결과를 이용하여 피로 해석을 하였다. 아울러 Flexible Tube의 변위량이 크게 발생하는 것을 고려하여 기하학적 비선형 해석을 실시하였으며 Flexible Tube의 변형량은 끝단에서 6mm의 변위가 발생하도록 하였다. 본 연구에서 얻어진 결과는 다음과 같다. (1) Tube의 반경이 증가하면 피로한계 응력반복수는 선형적으로 감소한다. (2) 본 연구에서 사용된 tube중 주름의 반경이 1.7mm일때 피로 수명이 가장 긴 것을 알 수 있다.

  • PDF

The Study about the Fatigue Strength Improvement Mechanism by the Processing of Fillet Welded Joint (필렛용접이음부의 후처리에 따른 피로강도 향상 메커니즘의 연구)

  • Lim, Cheong Kweon;Park, Moon Ho;Chang, Chun Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.319-327
    • /
    • 1999
  • This study makes mechanism of the fatigue strength improvement by the processing of weld toe clear for the vertical cross rib specimens which was made fillet weld joint, also it proposes to the appropriate later processing. As a result of tension fatigue test, the fatigue strength improvement could have been seen in later processed specimens than as-weld specimens. Especially fatigue crack initial life $N_c$ increased in specimens which processed grinder after hammer-peening. Also, fatigue crack propagation life $N_p$ improved more in hammer-peening specimens than as-weld or TIG specimens. It thinks that $N_c$ is because of the geometrical shape of weld toe, i.e. the relaxation of the stress concentration and also that $N_p$ is because the big compression residual stress which was introduced in the surface by hammer-peening is restraining the propagation of fatigue crack.

  • PDF

Fatigue Evaluation of a Steel Bridge in Service through Stress History Measurement and Consideration of Stress Category (공용중인 교량의 응력이력 계측 및 응력범주를 고려한 피로평가)

  • Na, Sung-Ok;Kwon, Min-Ho;Cha, Cheol-Jun;Kim, In-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2014
  • The proper stress history measurement should be conducted in order to examine the accurate cause of fatigue cracks or the fatigue safety in the steel bridge. Only one strain gauge is generally installed in the field for the stress history examination because of the field circumstances, economic feasibility, workability, and so on. However, this method may not consider the actual size of the specific structure, the gauge length, and the affect of stress concentration in the welded joint. In addition, it is difficult to apply for the stress analysis. Therefore, this study suggests improvements that are a great number of gauge installations, the gauge location adjustment, and the use of the minimum length gauge. It is drived the correlative equation of strain for the distance between the welding toe and the strain gauge installation, and compare correlative equation with equation of IIW. Also, this study could estimate the remaining life and fatigue damage of bridge in service by selecting the suitable stress category. In conclusion, it is possible to understand the member which is high in the fatigue cracks, and the quantitative relations between the welding toe and the strain gauge installation distances. The proposed approach in this study can make an more accurate fatigue damage and a remaining life prediction so that the improved method should be applied in measuring the strain of bridges from now on.

Fatigue Characteristics and Compressive Residual Stress of Shot Peened Alloy 600 Under High Temperature (쇼트피닝 가공된 Alloy 600 재료의 고온환경하에서의 잔류응력 및 피로특성)

  • Kim, Jong Cheon;Cho, Hong Seok;Cheong, Seong Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.333-338
    • /
    • 2013
  • The compressive residual stress and fatigue behavior of shot peened alloy 600 under a high-temperature environment is investigated in this study. Alloy 600 is used in the main parts of nuclear power plants, and the compressive residual stress induced by the shot peening process is considered to prevent SCC (stress corrosion cracking). To obtain practical results, the fatigue characteristics and compressive residual stress are evaluated under the actual operating temperature of a domestic nuclear power plant, as well as a high-temperature environment. The experimental results show that the peening effects are valid at a high temperature lower than approximately $538^{\circ}C$, which is the threshold temperature. The fatigue life was maintained at temperatures lower than $538^{\circ}C$, and the compressive residual stress at $538^{\circ}C$ was 68.2% of that at room temperature. The present results are expected to be used to obtain basic safety and reliability data.

Study on Fatigue Behavior of Carbon Fiber Reinforced Polyimide Composites (탄소섬유강화 복합적층판의 피로특성에 관한 연구)

  • 이창수;황운봉;한경섭;윤병일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-60
    • /
    • 1991
  • Fatigue behavior of carbon fiber reinforced polyimide composite materials was studied experimentally and analytically. The physical variables, such as cyclic displacements and hysteresis loop energy were observed during fatigue tests. Fatigue life of the investigated [0/90]$_{2S}$ laminates was predicted by H'||'&'||'H models which was proposed based on the fatigue modulus and resultant strain. The predicted fatigue life by H'||'&'||'H curves was reasonably close to the experimental data. Fractography study shows that fatigue failure mechanism of [0/90]$_{2S}$ laminated composite materials involves failure break, matrix tearing and fiber-matrix debonding as well as delamination of layers.