• Title/Summary/Keyword: 피드백 제어기

Search Result 280, Processing Time 0.025 seconds

Adaptive Output Feedback Control of Unmanned Helicopter Using Neural Networks (신경회로망을 이용한 무인헬리콥터의 적응출력피드백제어)

  • Park, Bum-Jin;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.990-998
    • /
    • 2007
  • Adaptive output feedback control technique using Neural Networks(NN) is proposed for uncertain nonlinear Multi-Input Multi-Output(MIMO) systems. Modified Dynamic Inversion Model(MDIM) is introduced to decouple uncertain nonlinearities from inversion-based control input. MDIM consists of approximated dynamic inversion model and inversion model error. One NN is applied to compensate the MDIM of the system. The output of the NN augments the tracking controller which is based upon a filtered error approximation with online weight adaptation laws which are derived from Lyapunov's direct method to guarantee tracking performance and ultimate boundedness. Several numerical results are illustrated in the simulation of Van der Pol system and unmanned helicopter with model uncertainties.

RCGA-Based States Observer Design of Container Crane concerned with Design Specification (설계사양을 고려한 컨테이너 크레인의 RCGA기반 상태 관측기 설계)

  • Lee, Soo-Lyong;Ahn, Jong-Kap;Lee, Yun-Hyung;Son, Jeong-Ki;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.851-856
    • /
    • 2008
  • Construction of large-scale container ports with the productivity improvements in container cranes shortened time of staying port to increase the level of service it harbors efforts accelerated. About container crane system exerted on the input, which is designed to look good performance considering the states feedback control system. The states observer designed of container cranes state variables that are expected to measurement noise or particular measurement signal. In the status of existing research, the feedback gain matrix and the state observer gain matrix are searched by being separated solving. But the feedback gain matrix and the state observer gain matrix are searched by RCGAs at once that be used robust search method in this paper.

Real-Time Hybrid Shaking Table Test of a Soil-Structure Interaction System with Dynamic Soil Stiffness (동적 지반강성을 갖는 지반-구조물계의 실시간 하이브리드 진동대 실험)

  • Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.217-225
    • /
    • 2007
  • This paper proposes the real-time hybrid shaking table testing methods to simulate the dynamic behavior of a soil-structure interaction system with dynamic soil stiffness by using only a structure model as the physical specimen and verifies their effectiveness for experimental implementation. Experimental methodologies proposed in this paper adopt such a way that absolute accelerations measured from the superstructure and shaking table are feedback to the shaking table controller, and then the shaking table is driven by the calculated motion of the absolute acceleration (acceleration feedback method) or the absolute velocity (velocity feedback method) of foundation that is required to simulate the dynamic behavior of a whole soil-structure interaction system. The shaking table test is implemented by reflecting the dynamic soil stiffness, which are differently approximated from the theoretical one depending on the feedback methods, on the shaking table controller to calculate soil part. The effectiveness of the proposed experimental methods is verified by comparing the response measured from the test on a foundation-fixed structural model and that obtained from the experiment of a soil-interaction system under the consideration in this paper and by matching the dynamic soil stiffness reflected on the shaking table controller with that identified using the experimentally measured data.

Optimal Output Feedback Control Simulation for the Operation of Space Shuttle Main Engine (우주왕복선 액체로켓엔진 작동의 최적출력제어 시뮬레이션)

  • Cha, Jihyoung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.37-53
    • /
    • 2016
  • This paper deals with an optimal output control for Space Shuttle Main Engine (SSME), a liquid propellant rocket engine using a staged-combustion cycle. For this purpose, we modeled simplified mathematical model of SSME using each SSME component divided into 7 major categories and found trim points called Rated Propulsion Level (RPL). For design the closed-loop system of SSME, we designed optimal output feedback Linear Quadratic Regulation (LQR) control system using SSME linearized model under RPL 104% and demonstrated the performance of the controller through numerical simulation.

Development of Autonomous Algorithm Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots (온라인 피드백 에러 학습을 이용한 이동 로봇의 자율주행 알고리즘 개발)

  • Lee, Hyun-Dong;Myung, Byung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.602-608
    • /
    • 2011
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. The NN for the online feedback-error learning can composed that the input layer consists of six units for the inputs $x_i$, i=1~6, the hidden layer consists of two hidden units for hidden outputs $o_j$, j=1~2, and the output layer consists of two units for the outputs ${\tau}_k$, k=1~2. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels. The initial q value was set to [0, 5, ${\pi}$].

Driving Characteristics Improvement according to the Position Feedback Control of Slotless Linear Synchronous Motor for Living Application (주거 환경 적용을 위한 Slotless 선형 동기전동기의 위치 피드백 제어에 따른 구동 특성 개선)

  • Cho, Kyoung-Pil;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.2
    • /
    • pp.285-290
    • /
    • 2013
  • The slotless linear synchronous motor(LSM) has the advantages that the structure of the mover is simple and it can control the trust force ripple by make the magnetic energy in a gap uniform by removing a slot of the primary iron core. Also, the application of the transportation system is becoming expansion because it high efficiency drive is possible and compares with the other LSM as control is more excellent. However, the application of the living field was unsatisfactory. Therefore, in this study, we examined the drive characteristics by the position feedback control for the living field application of the slotless LSM and we prove useful of the controller through load loading and the acceleration changing to get minimization of the speed vibration and stable answer characteristics.

Appling of Force Control of the Robotic Sweeping Machine for Grinding (연마작업을 위한 로봇형 연마기의 힘제어 적용)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.276-281
    • /
    • 2014
  • In this research, we describe a force feedback control for industrial robots has been proposed as a system which is suitable to work utilizing pressure sensitive alternative to human. Conventionally, polished surface of the workpiece are recognized, chamfer ridge, machining processes such as deburring, and it is most difficult to automate because of its complexity, has been largely dependent on the human. To aim to build automatic vacuum system robotic force control was gripping the grinding tool, the present study we examined the adaptability to the polishing process to understand the characteristics of the control system feedback signal obtained from the force sensor mainly. Furthermore, as a field, which holds the key to the commercialization, I went ahead with the application to robotic sweeping machine. As a result, the final sweeping utilizing a robot machine to obtain a very good grinded surface was revealed.

Real Time Control of Inverter Resistance Welder Using Microcontroller (마이크로컨트롤러를 이용한 인버터 저항용접기의 실시간제어)

  • Bang, Young-Ho;Son, Young-Dae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2644-2646
    • /
    • 1999
  • 본 연구에서는 에너지절감 및 최적의 용접결과(최소 스패터 등), 변압기 소형화를 위해 16비트 마이크로컨트롤러를 적용한 고주파 인버터식 저항용접기 시스템을 구성하였으며, 용접파라미터의 순시 피드백과 통전시간 제어를 통해 용접조건에 맞는 최적의 용접전력을 모재에 공급할 수 있는 저항용접기를 구현하여 그 특성파악을 행하였다.

  • PDF

Virtual Brake Pressure Sensor Using Vehicle Yaw Rate Feedback (차량 요레이트 피드백을 통한 가상 제동 압력 센서 개발)

  • You, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.113-120
    • /
    • 2016
  • This paper presents observer-based virtual sensors for YMC(Yaw Moment Control) systems by differential braking. A high-fidelity empirical model of the hydraulic unit in YMC system was developed for a model-based observer design. Optimal, adaptive, and robust observers were then developed and their estimation accuracy and robustness against model uncertainty were investigated via HILS tests. The HILS results indicate that the proposed disturbance attenuation approach indeed exhibits more satisfactory pressure estimation performance than the other approach with admissible degradation against the predefined model disturbance.

A Mixed H2/H State Feedback Controller Based on LMI Scheme for a Wheeled Inverted Pendulum running on the Inclined Road (경사면을 주행하는 차륜형 역진자를 위한 선형행렬부등식 기반 혼합 H2/H 상태피드백 제어기 설계)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.617-623
    • /
    • 2010
  • In this research an LMI based mixed $H_2/H_{\infty}$ controller for a Wheeled Inverted Pendulum is designed and a numerical simulation of that is carried out. The Wheeled Inverted Pendulum is a kind of an inverted pendulum that has two equivalent points. To keep that the naturally unstable equivalent point, a controller should control the wheels persistently. Dynamic equations of the Wheeled Inverted Pendulum are derived with considering inclined road that is one of the representative road conditions. A Linear Matrix Inequality method is used to construct a controller that is able to stabilize the Wheeled Inverted Pendulum with considering the inclined road condition aggressively. Various numerical simulations show that the LMI based controller is doing well on not only flat road but also inclined road condition.