• Title/Summary/Keyword: 피드백 버퍼 제어방식

Search Result 9, Processing Time 0.022 seconds

Internet Congestion Control Using Queue Prediction (큐 예측을 통한 인터넷 혼잡 제어)

  • 권성기;장봉석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.301-303
    • /
    • 2003
  • 본 논문에서는 인터넷 혼잡제어를 위한 새로운 방법을 제안한다. 라우터 큐에 예측제어함수를 적용하여 미래의 혼잡상황을 예측하고 소스에게 미리 피드백을 수행하여 혼잡제어를 한다. 예측제어함수는 실제 큐와 예측된 큐의 오차를 계산하여 주기적으로 예측함수를 갱신하는 NLMS 방식의 예측제어함수를 적용한다. 피드백 정보의 전송지연으로 인한 혼잡상황 악화가 발생하기 전에 혼잡상황에 대응할 수 있으므로 라우터 버퍼 사용효율의 최적함을 유지할 수 있으며 버퍼 오퍼플로우로 발생하는 패킷의 손실을 최소화 할 수 있다. 혼잡상황을 야기하도록 과도한 트래픽을 생성하여 라우터에서 예측함수를 적용하는 경우와 단지 혼잡알림제어를 수행하는 경우를 비교하여 시뮬레이션을 수행하였다. 예측함수를 적용하는 경우는 시스템 성능효율을 증가시키며 라우터 버퍼 크기를 최적하게 사용할 뿐만 아니라 오퍼플로우가 발생하지 않았으나 예측함수를 적용하지 않고 혼잡알림제어를 수행하는 경우는 과도한 큐 크기와 오버플로우가 발생하였음을 시뮬레이션을 통해서 보인다.

  • PDF

An ABR Service Traffic Control of Using feedback Control Information and Algorithm (피드백 제어 정보 및 알고리즘을 이용한 ABR 서비스 트래픽제어)

  • 이광옥;최길환;오창윤;배상현
    • Journal of Internet Computing and Services
    • /
    • v.3 no.3
    • /
    • pp.67-74
    • /
    • 2002
  • Asynchronous transfer mode (ATM) can be efficiently used to transport packet data services. The switching system will support voice and packet data services simultaneously from end to end applications. To guarantee quality of service (QoS) of the offered services, source rate to send packet data is needed to control the network overload condition. Most existing control algorithms are shown to provide the threshold-based feedback control technique. However, real-time voice calls can be dynamically connected and released during data services in the network. If the feedback control information delays, quality of the serviced voice can be degraded due to a time delay between source and destination in the high speed link, An adaptive algorithm based on the optimal least mean square error technique is presented for the predictive feedback control technique. The algorithm attempts to predict a future buffer size from weight (slope) adaptation of unknown functions, which are used for feedback control. Simulation results are presented, which show the effectiveness of the algorithm.

  • PDF

A Feedback Buffer Control Algorithm for H.264 Video Coding (H.264 동영상 부호기를 위한 Feedback 버퍼 제어 방식)

  • Son Nam Rye;Lee Guee Sang
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.625-632
    • /
    • 2004
  • Since the H.264 encoding adopts both forward prediction and hi-direction prediction modes and exploits Variable Length Coding(VLC), the amount of data generated from video encoder varies as Flaying time goes by. The fixed bit rate encoding system which has limited transmission channel capacity uses a buffer to control output bitstream It's necessary to control the bitstream to maintain within manageable range so as to protect buffer from overflow or underflow. With existing bit amount control algorithms, the $\lambda_{MODE}$ which is relationship between distortion value and quantization parameter often excesses normal value to end up with video error. This paper proposes an algorithm to protect buffer from overflow or underflow by introducing a new quantization parameter against distortion value of H.264 video data. The test results of 6 exemplary data show that the proposed algorithm has the same PSNR as and up to 8% reduced bit rate against existing algorithms.

A Feedback Control Model for ABR Traffic with Long Delays (긴 지연시간을 갖는 ABR 트래픽에 대한 피드백제어 모델)

  • O, Chang-Yun;Bae, Sang-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1211-1216
    • /
    • 2000
  • Asynchronous transfer mode (ATM) can be efficiently used to transport packet data services. The switching system will support voice and packet data services simultaneously from end to end applications. To guarantee quality of service (QoS) of the offered services, source rateot send packet data is needed to control the network overload condition. Most existing control algorithms are shown to provide the threshold-based feedback control technique. However, real-time voice calls can be dynamically connected and released during data services in the network. If the feedback control information delays, quality of the serviced voice can be degraded due to a time delay between source and destination in the high speed link. An adaptive algorithm based on the optimal least mean square error technique is presented for the predictive feedback control technique. The algorithm attempts to predict a future buffer size from weight (slope) adaptation of unknown functions, which are used fro feedback control. Simulation results are presented, which show the effectiveness of the algorithm.

  • PDF

A Switch Behavior Supporting Effective ABR Traffic Control for Remote Destinations in a Multiple Connection (다중점 연결의 원거리 수신원에 대한 효율적이 ABR 트래픽 제어를 제공하는 스위치 동작 방식)

  • Lee, Sook-Young;Lee, Mee-Jeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.6
    • /
    • pp.1610-1619
    • /
    • 1998
  • The ABR service class provides feedback based traffic control to transport bursty data traffic efficiently. Feedback based congestion control has first been studied to be applied to unicast connections. Recently. several congestion control algorithms for multicast connections have also been proposed as the number of ABR applications requiring multicast increases. With feedback based congestion control, the effectiveness of a traffic control scheme diminishes as propagation delay increases. Especially for a multicast connection, a remote destination may suffer unfair service compared to a local destination due to the delayed feedback. Amelioration of the disadvantages caused by feedback delay is therefore more important for remote destinations in multicast connections. This paper proposes a new switch behavior to provide effective feedback based mathc control for rentoh destinations. The proposed switches adjust the service rate dynamically in accordance woth the state of the downstream, that is, the congestion of the destinaion is immediately controlled by the nearest apstream switch before the source to ramp down the transmission rate of the connection. The proposed switch has an implementation overhead to have a separate buffer for each VC to adjust the service rate in accordance with a backward Rm cell of each VC. The buffer requirement id also increased at intermediate switches. Simulation results show that the proposed switch reduces the cell loss rate in both the local and the remote destinations and slso amelioratd the between the two destinations.

  • PDF

An ABR Rate-based Control Scheme Avoiding Access Point Buffer Overflow and Underflow during Handoffs in Wireless ATM Networks (무선 ATM망에서 핸드오프시 접속점 버퍼 오버플로우와 언더플로우를 방지하는 ABR 전송률 기반 제어 방안)

  • Ha, In-Dae;Oh, Jung-Ki;Park, Sang-Joon;Choi, Myung-Whan
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.527-539
    • /
    • 2001
  • The wireless asynchronous transfer mode (ATM) system has the advantage of providing the broadband services with various quality-of-service requirements to the mobile terminal efficiently by utilizing the ATM technology developed for the wired ATM system. The available bit rate (ABR) service among various ATM services utilizes the available bandwidth remaining in the ATM link, which allows the efficient bandwidth usage. During the handoff of the mobile terminal, however, the queue length in the access point (AP) which resides in the boundary of the wired ATM network and the wireless ATM network may increase abruptly. In this paper, we propose a scheme which prevents the buffer-overflow and buffer-underflow in the AP during the handoff of the wireless ABR connection in the wireless ATM system using binary feedback rate-based ABR traffic control. This scheme controls the source's cell generation rate during both handoff period and some time interval after the completion of the handoff procedure. The simulation results show that the proposed scheme prevents the buffer-overflow and buffer-underflow. The proposed scheme can contribute to increasing the throughput of the wireless ABR service during handoff by preventing the buffer overflow and underflow during handoff period.

  • PDF

Resource Allocation and Transmission Control Scheme using Window-Based Dynamic Bandwidth Smoothing Method (윈도우 기반 동적 대역폭 평활화 방식을 이용한 자원 할당 및 전송 제어 기법)

  • Kim Hyoung-Jin;Go Sung-Hyun;Ra In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.943-950
    • /
    • 2005
  • Recently, many of researches on stream transmission for satisfying each of different real-time transmission condition of the multimedia data that demands various service quality through high-speed networks have been studied actively. In this paper, we design a scheme that discriminately reserves the network resources for the transmission of each multimedia application and propose a bandwidth allocation scheme for improving the utilization ratio of free resources. And we also propose a pipelining scheme for providing flexible real-time transmission. The proposed schemes can be used to support a real-time transmission by applying feedback transmission control method based on receiving buffer for guaranteeing the synchronization conditions requested by the multimedia data. Moreover, we propose a transmission control scheme that can take the amount of network resources down to the minimum amount within the range of permissible error-range under the guarantee with no quality degradation simultaneously when the bottleneck is caused by the network congestion. Finally, we propose a dynamic bandwidth smoothing scheme that can smooth the maximum bandwidth to the demand of each video steam for giving continuous transmission to the delay sensitive video steam between senders and receivers.

Dynamic-Response-Free SMPS Using a New High-Resolution DPWM Generator Based on Switched-Capacitor Delay Technique (Switched-Capacitor 지연 기법의 새로운 고해상도 DPWM 발생기를 이용한 Dynamic-Response-Free SMPS)

  • Lim, Ji-Hoon;Park, Young-Kyun;Wee, Jae-Kyung;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • In this paper, we suggest the dynamic-response-free SMPS using a new high-resolution DPWM generator based on switched-capacitor delay technique. In the proposed system, duty ratio of DPWM is controlled by voltage slope of an internal capacitor using switched-capacitor delay technique. In the proposed circuit, it is possible to track output voltage by controlling current of the internal capacitor of the DPWM generator through comparison between the feedback voltage and the reference voltage. Therefore the proposed circuit is not restricted by the dynamic-response characteristic which is a problem in the existing SMPS using the closed-loop control method. In addition, it has great advantage that ringing phenomenon due to overshoot/undershoot does not appear on output voltage. The proposed circuit can operate at switching frequencies of 1MHz~10MHz using internal operating frequency of 100 MHz. The maximum current of the core circuit is 2.7 mA and the total current of the entire circuit including output buffer is 15 mA at the switching frequency of 10 MHz. The proposed circuit has DPWM duty ratio resolution of 0.125 %. It can accommodate load current up to 1 A. The maximum ripple of output voltage is 8 mV. To verify operation of the proposed circuit, we carried out simulation with Dongbu Hitek BCD $0.35{\mu}m$ technology parameter.

One-Chip Multi-Output SMPS using a Shared Digital Controller and Pseudo Relaxation Oscillating Technique (디지털 컨트롤러 공유 및 Pseudo Relaxation Oscillating 기법을 이용한 원-칩 다중출력 SMPS)

  • Park, Young-Kyun;Lim, Ji-Hoon;Wee, Jae-Kyung;Lee, Yong-Keun;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.148-156
    • /
    • 2013
  • This paper suggests a multi-level and multi-output SMPS based on a shared digital logic controller through independently operating in each dedicated time periods. Although the shared architecture can be devised with small area and high efficiency, it has critical drawbacks that real-time control of each DPWM generators are impossible and its output voltage can be unstable. To solve these problems, a real-time current compensation scheme is proposed as a solution. A current consumption of the core block and entire block with four driver buffers was simulated about 4.9mA and 30mA at 10MHz switching frequency and 100MHz core operating frequency. Output voltage ripple was 11 mV at 3.3V output voltage. Over/undershoot voltage was 10mV/19.6mV at 3.3V output voltage. The noise performance was simulated at 800mA and 100KHz load regulation. Core circuit can be implemented small size in $700{\mu}m{\times}800{\mu}m$ area. For the verification of proposed circuit, the simulations were carried out with Dong-bu Hitek BCD $0.35{\mu}m$ technology.