• Title/Summary/Keyword: 피드백 기관 제어

Search Result 6, Processing Time 0.018 seconds

Control of pressure and thrust for a variable thrust solid propulsion system using linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.167-174
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable to long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For this we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using feedback linearization technique. Derived thrust equation and designe a thrust control model. We design the proportion-integral controller for linearizing about operating point. We also demonstrate the performance of controller model through numerical simulations.

  • PDF

Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho;Kim, Dae-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For the pressure control within the chamber, we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using the feedback linearization technique. Also we derive the equation of the thrust for an under-expanded one-dimensional nozzle and then design a proportional-intergral controller after linearizing the thrust model for an operating point. Finally, we demonstrate the performance of the controller through a numerical simulation.

Estimation of Cylinder Pressure Using the Crank Shaft Speed(1) (크랭크축 각속도를 사용한 실린더내 압력 추정(1))

  • 임병진;박종범;임인건;배상수;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.40-49
    • /
    • 1994
  • This paper describes the method to investigate combustion pressure in the cylinder without modifications of engine. Assuming engine dynamics as a single degree of freedom cylinder pressure is estimated using the variation of crank shaft speed. For this study pressure, crank shaft sped, and load are sampled by the crank angle. This study suggests the variation of crank shaft speed can be used as parameters of feedback engine control.

  • PDF

Example Development of Medical Equipment Applying Power Electronics Technique (전력전자 기술을 응용한 의료장비 개발 사례)

  • 고종선;이태훈;김영일;김규겸;박병림
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.524-530
    • /
    • 2002
  • A control of the body posture and movement is maintained by the vestibular system, vision, and proprioceptors. Afferent signals from those receptors are transmitted to the vestibular nuclear complex, and the efferent signals from the vestibular nuclear complex control the eye movement and skeletal muscle contract. The postural disturbance caused by loss of the vestibular function results in nausea, vomiting, vertigo and loss of craving for life. The purpose of this study is to develop a off-vertical rotatory system for evaluating the function of semicircular canals and otolith organs, selectively, and visual stimulation system for- stimulation with horizontal, vortical and 3D patterns. The Off-vortical axis rotator is composed of a comportable chair, a DC servo-motor with reducer and a tilting table controlled by PMSM. And a double feedback loop system containing a velocity feedback loop and a position feedback loop is applied to the servo controlled rotatory chair system. Horizontal, vertical, and 3D patterns of the visual stimulation for applying head mounted display are developed. And wireless portable systems for optokinetic stimulation and recording system of the eye movement is also constructed. The gain, phase, and symmetry is obtained from analysis of the eye movement induced by vestibular and visual stimulation. Detailed data were described.

Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application (자동차용 연료전지 냉각계통 열관리 동적 모사)

  • Han, Jae Young;Lee, Kang Hun;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1185-1192
    • /
    • 2012
  • The typical operating temperature of an automotive fuel cell is lower than that of an internal combustion engine, which necessitates a refined strategy for thermal management. In particular, the performance of the cooling module has to be higher for a fuel cell system because the temperature difference between the fuel cell and the surrounding is lower than in the case of the internal combustion engine. Even though the cooling system of an automotive fuel cell determines the operating temperature and temperature distribution of the fuel cell, it has attracted little research attention. This study presents the mathematical model of a cooling system for an automotive fuel cell system using Matlab/$Simulink^{(R)}$. In particular, a radiator model is developed for design optimization from the development stage to the operating stage for an automotive fuel cell. The cooling system model comprises a fan, pump, and radiator. The pump and fan model have an empirical relation, and the dynamics of the pump and fan are only explained by motor dynamics. The basic design study was conducted, and the geometric setup of the radiator was investigated. When the control logic was applied, the pump senses the coolant inlet temperature and the fan senses the coolant out temperature. Additionally, the cooling module is integrated with the fuel cell system model so that the performance of the cooling module can be investigated under realistic operating conditions.

Stability Analysis of Three-Loop Autopilot with respect to IMU Position and C.G Variation Rate in Guided Missiles (IMU 탑재 위치 및 유도탄 무게 중심 변화율에 따른 Three-Loop 조종 알고리듬 안정성 분석)

  • Kwon, Hyuck-Hoon;Kim, Yoon-Hwan;Park, Bong-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.492-501
    • /
    • 2016
  • Three-Loop autopilot is generally used for the acceleration control of guided missiles. Because the acceleration command to the three-loop autopilot is given as values at the center of gravity, feedback information of IMU should be obtained at the same position. However, the position of IMU might not be located at the center of gravity due to the sub-system assignment. This paper presents the stability analysis of three-loop autopilot with respect to the arbitrary position of IMU and variation rate of center of gravity. Gain and phase margins are calculated for several trim points for general anti-tank missiles.