• Title/Summary/Keyword: 피난 안전성

Search Result 255, Processing Time 0.026 seconds

Study on Horizontal RSET Evacuation safety verification process Based ASET in Underground Link Multi-Complex building (지하연계 복합건축물 ASET 기반의 수평 RSET 피난안전성 검증 프로세스 연구)

  • Song, Chang-Young;Song, Min-Su
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.146-149
    • /
    • 2015
  • 지하연계 복합건축물의 건립이 급증함에 따라 건축물의 피난 성능이 중요시되고 있으며 복잡 다양해진 피난유도에 대한 피난시설 배치와 RSET(Required Safe Egress Time)이 필수적으로 관련 지침에 명시되고 있다. 그러나 RSET에 대한 신뢰성 검증 및 용도별 수용인원 산정 방법이 주관적인 관점에 의해 제시되고 있으며 이런 검증 자료의 검토기준이 정량적이지 않아 안전성 확보가 이뤄지지 않고 있는 것이 현실이다. 따라서 본 연구에서는 지하연계 복합건축물의 피난 안전성을 확보하는데 가장 적합한 검증을 위해 방재 선진국의 ASET 기준을 심층적으로 분석하여 지하연계 건축물 등에서 국내 실정에 맞게 적용할 수 있는 최적화된 ASET을 도출하였다. 이러한 ASET의 신뢰성을 검증할 수 있도록 피난안전구역 및 준하는 구역의 현실 가능성을 분석하고 국내 외에서 상용화되고 있는 피난시뮬레이션 소프트웨어를 통해 건축물의 용도에 따른 수용인원 산정기준의 현실적 방안과 피난경로 설정의 Logic을 감안하여 피난의 안전 및 최단시간 가능성을 고려하였다. 따라서 지하연계복합 건축물에서 요구하는 피난성능과 수용인원의 최적화된 RSET을 정량적으로 도출함에 따라 피난 안전성에 대한 검증 프로세스를 제시하였다.

  • PDF

Quantitative Evaluation of Escape Safety Considering Extension of Escape Time by Escape Distance and Escape Barrier (피난거리와 장해에 의한 피난시간 연장의 정량화를 통한 피난안전성의 정량적인 평가수법개발)

  • Jeong, Gun-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • Escape distance and escape barrier are critical elements for the quantitative evaluation of escape safety. Through theoretical demonstration and modeling in precedent studies, they have been analyzed for their generality and applicability. To make more practical evaluation method, we should quantitatively analyze the influence of each barrier and escape condition on escape safety considering various barriers in escaping routes. In this study, to develop more accurate and applicable escape analysis model, we have focused on three research methods as below: First, we derived quantified function to predict various escape barriers in escaping routes by theoretical analyses of the escape barriers and conditions. Second, we substituted the derived quantified function for an evaluation tool of escape safety suggested by precedent studies. Third, we examined applicability and feasibility of the developed method by modeling with the consideration of the escape conditions and barriers.

Safety Evaluation of Evacuation in a Dormitory Girls' High School based on PAPS (PAPS에 기반한 여자고등학교 기숙사생의 피난 안전성 평가)

  • Jeon, Seung-duk;Kong, Ha-sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.469-481
    • /
    • 2022
  • This study is for increasing evacuation safety by analyzing RSET(the required safe escape time) through the arrangement of personnel by floor and by room while evacuating in a Girls' High School Dormitory. For this study, PAPS(Physical Activity Promotion System) results that have not been studied so far were analyzed and reflected in evacuation simulations on the premise that individual student's physical strength can affect evacuation. Based on the PAPS results, four scenarios were applied. In addition, evacuation simulation using the pathfinder program was conducted in two situations: the evacuation route was assigned or not. Scenario 4 was the fastest at 168.5 seconds of RSET in assigning evacuation routes among scenarios. As a result of this study, the arrangement of students focusing on improving their academic ability and student life guidance excluding student physical strength has problem. In order to solve this problem, it is effective to place C group students(low grade on PAPS) on low floors and A group students(high grade on PAPS) on high floors and to assign evacuation routes in each room. In the future, the following ways need to be more studied. A study on how to increase evacuation safety through practical evacuation training, the way of assessing evacuation safety reflecting the lifestyle and physical strength of girls, the evacuation route assignment according to the fire occurrence point, and the method to secure evacuation routes in the event of a fire near stairs or entrances should be conducted.

Performance-Based Evaluation on Evacuation Safety of Road Tunnels Considering Fire Size and Evacuation Exit (화재 크기와 피난연결통로를 고려한 도로터널의 성능기반 피난안전성 평가)

  • Si-Hyun Oh;In-Wook Heo;Sang-Ki Lee;Seung-Ho Choi;Sunnie Haam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.28-36
    • /
    • 2024
  • In this study, an analytical evaluation of evacuation safety in typical road tunnels was conducted. The Fire Dynamics Simulator (FDS) was employed to perform fire simulations with varying fire sizes to determine the allowable evacuation time in road tunnels. Additionally, evacuation simulations were performed using Pathfinder, considering the width of barrier doors and the spacing of evacuation passageways, to calculate the required evacuation time. A comparison between the allowable and required evacuation times was conducted to assess the impact of fire size, passageway spacing, and barrier door width on tunnel evacuation safety. The results from the fire and evacuation simulations indicated that an increase in fire size and passageway spacing, along with a decrease in door width, resulted in an increase in the number of casualties. Conversely, increasing the barrier door width to more than 1.2meters led to a reduction in casualties as passageway spacing increased.

Study on the Escape Safety of University Dormitory with the Consideration of Plan Types (대학 기숙사의 평면 형태에 따른 피난 안전성 검토)

  • Jeong, Hyeon-Jae;Jeong, Gun-Sik;Ahn, Young-Chull
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.1-7
    • /
    • 2010
  • University dormitory has some weaknesses against disaster such as fire because of high population density and strict control of access in night time. The purpose of this study is suggestion of a guide of effective floor plan for improvement of evacuation safety. Plans for preventing disasters are studied and evacuation safeties are analysed using network model analysis method according to plan types. The weakness of disaster prevention is quantified, and effectiveness of bidirectional evacuation is confirmed. The circuit type floor plan shows best evacuation characteristics and this result is anticipated to be adopted to design process of new dormitories and will contribute to improvement of evacuation safety.

Quantitative Analysis of Escape Safety in the Hospital by the Change of Floor Plan Types (병원평면의 변화에 따른 피난안정성의 변화에 대한 정량적인 분석)

  • Jeong, Gun-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.33.1-33.1
    • /
    • 2010
  • 불특정다수의 사람들이 이용하는 숙박계시설이며, 자립피난이 곤란한 피난약자에 해당하는 환자 및 노약자, 임산부, 어린이가 대다수 이용하는 병원은 피난안전상 매우 불리한 용도의 건축물이라 할 수 있다. 따라서 본 연구에서는 실재병원의 건립 당시 평면계획과 실재 사용 중 평면을 조사하고, 이를 대상으로 본 연구의 선행연구에서 발표된 피난안전성의 평가법에 적용하여, 병원 평면의 변화에 따른 피난안전성의 변화를 정량적으로 나타내는 것으로, 불가피한 평면의 변경 시에 참고자료로 활용 될 수 있는 근거를 제시 하고자 한다.

  • PDF

A Study on the Safety Evacuation of Onboard Fire (선박화재시 피난 안전성 연구)

  • Kim, Won-Wook;Kim, Chang-Je;Chae, Yang-Beom
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.29
    • /
    • pp.16-25
    • /
    • 2010
  • 선박화재는 육상과 달리 숙련된 인원과 다양한 장비에 의한 소화활동이 곤란하며 거의 자체적인 진화작업을 수행해야하므로 소화가 쉽지 않다. 화재는 일반적으로 화염에 의한 인명사고 보다 매연에 의한 질식사의 확률이 높으므로 인명사고를 방지하기 위해서는 신속한 초기 진화가 가장 중요하다. 하지만 여러 가지 이유로 부득이 소화가 지연되거나 불가능할 경우에는 화재 구역으로부터 신속한 탈출만이 인명사고를 방지할 수 있다. 이 연구에서는 CFD기법을 이용한 시뮬레이션을 통하여 선박화재시 탈출에 지장이 되는 매연농도를 측정하고 피난시간과 비교하여 적절한 피난이 가능한지에 대한 안전성을 검토하고자 한다.

  • PDF

The Case Analysis through Fire Simulation FDS and Evacuation Simulation Pathfinder (화재 시뮬레이션 FDS와 피난시뮬레이션 Pathfinder 사례분석)

  • Kim, Jong Yoon;Jeon, Yong Han
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.6
    • /
    • pp.253-260
    • /
    • 2015
  • In this study, using the FDS as the fire simulation and evacuation simulations of the Pathfinder, set the main control room of the building to the fire point fire safety assessment studies were carried out. At first the quantitative result such as distribution of visibility as time passing, distribution of temperature, distribution of CO density produced results using fire-simulation and evacuation-simulation was carried out based on the result that produced the final safety evaluation result as being calculated of evacuation time. As the risk increased with the distribution of visibility at the result of fire-simulation, evacuation-simulation was carried out using the result. Finally the result was made 127.9 sec that everyone could evacuate. The numerical results are analyzed in case of the places in the building required safe egress time for safety a as the analysis to be no more than available safe egress time was analyzed to be secured. The results of this safety evaluation represent that more smooth evacuation safety performance can be secured by linking the event of fire firefighting equipment as a result of simulating the worst conditions.

  • PDF

A Study on the Development of Evacuation Safety Assessment System on Underground Space (지하공간의 피난안전성평가시스템 개발에 관한 연구)

  • 김진수;박종근;노삼규
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • In this study; the evaluation system models for evacuation safety assessment of underground malls were presented and related software program was developed. In addition, database was built integrating various data which were essential to evacuation safety assessment and enabling effective safety assessment with low cost and time. As a results of case study in local underground malls, the evacuation safety assessment system has examined in therms of field applicability and reliability.

Egress Safety of Nursing Hospital Considering Egress Guides and Smoke Exhaust System (피난유도자 수와 배연설비를 고려한 요양병원의 피난안전성 평가)

  • Choi, Seung-Ho;Darkhanbat, Khaliunaa;Heo, Inwook;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.64-71
    • /
    • 2022
  • In this study, fire and egress simulation was conducted for the egress safety evaluation of the nursing hospitals. A fire simulation was performed with or without the smoke exhaust system using the FDS, and the available safe egress time (ASET) of the nursing hospitals was calculated. In addition, an egress simulation considering the characteristics of occupants and egress delay time was performed using Pathfinder, and the required safe egress time (RSET) was calculated. By comparing the ASET and RSET, the egress safety of the nursing hospital with or without a smoke exhaust system was evaluated according to the number of egress guides and the egress delay time. The simulation results show that the number of casualties increased as the egress delay time increased, and the required safe egress time decreased as the number of egress guides increased. In addition, it was found that if a smoke exhaust system with the capacity specified in the KFPA is secured, the available safe egress time can be greatly increased and the number of casualties can be greatly reduced.