• Title/Summary/Keyword: 플룸

Search Result 152, Processing Time 0.025 seconds

A Plot Scale Experiment to Assess the NPS Reduction for Non-irrigated Cropland (밭 비점오염 저감효과 평가를 위한 포장실험 연구)

  • Park, Tae-Yang;Kim, Sung-Jae;Jang, Jeong-Ryeol;Choi, Kang-Won;Kim, Sang-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.313-313
    • /
    • 2011
  • 오염물질은 배출원의 형태에 따라 점오염물질과 비점오염물질로 구분하고 있고 점오염물질은 생활하수, 산업폐수, 축산폐수, 환경기초시설 방류수 등으로 발생원이 명확하고 수집하여 처리 및 관리가 용이하나 비점오염물질은 배출위치가 명확하지 않으며, 강우 시 일시적으로 대량 배출되는 특징을 가진 농경지, 도로, 대지, 임야 등에서 배출되는 오염물질을 말한다. 우리나라에서 비점오염은 전체 수질오염의 42~67%(2003년)를 차지하는 것으로 나타났고, 2015년에는 전체 수질오염의 65~75%에 이를 것으로 예상되고 있다. 이 중 농업 비점오염원은 총 수질 오염량의 30%이상을 차지할 것으로 추정하고 있으나 이를 저감하기 위한 최적관리방법의 효과검증에 관한 연구는 아직 미미한 상태이다. 이에 본 연구에서는 농경지 중 밭에서 발생하는 비점오염을 저감하기 위한 기법으로 다양한 규모와 형태의 Silt Fence/식생밭두렁/침사구를 설치하여 밭 비점오염에 대한 저감효과를 평가하고 제어대책을 개발하여 최적관리기법을 제시하고 이에 대한 매뉴얼을 개발하기 위한 기초연구를 실시하려 한다. Silt Fence는 주로 건설공사현장에서 홍수유출 발생 시 인접한 하천 및 호소 등으로 유사 및 오염물질이 유입되는 것을 방지하기 위해 임시적으로 설치하는 시설로 합성 직물 필터를 나무나 금속 막대로 연결하여 등고선 방향으로 설치하는 것으로 대상 지역의 토양이 교란되기 전에 그 지역 아래쪽에 설치한다. 식생밭두렁은 밭의 이랑의 길이가 길어질수록 강우 시 빗물이 하단에 이를 때 늘어난 유량과 빠른 유속으로 토양침식이 가중되는데, 이때 30~35m간격으로 식생밭두렁을 설치하게 되면 상부와 하부의 침식정도가 유사한 경향을 보여 식생밭두렁을 설치하지 않은 지역에 비해 토양의 침식정도가 작게 나타나게 된다. 이러한 Silt Fence/식생밭두렁/침사구의 밭 비점오염의 저감효과 평가 및 제어대책 개발을 위한 기초 실험을 수행하기 위해 경상남도 사천시 용현면 선진리 일대에 시험포장을 조성 하였으며, 시험포장내에 6개의 Plot을 만들어 하단부에 포장에서의 유출수의 유량을 측정하기 위해 플룸을 설치하였고 실내실험을 통해 플룸의 수위-유량관계 곡선을 작성하였다. 포장의 토양특성을 판별하기 위해 Plot별로 토양시료를 채취하여 특성을 분석 한 결과 6개 Plot모두 모래함량이 많은 점토질 사질토로 분류되었다. 향후 강우 시 시험포장에서 발생하는 유출수의 수질을 분석하고 Silt Fence/식생밭두렁/침사구의 오염물질 저감효과를 분석하여 제어대책을 개발하게 되면 농업수자원확보를 위한 관리방안 선정을 위한 정책수립에 활용될 수 있으며 비점오염 배출을 최소화시켜 수질의 개선에 기여할 뿐만 아니라 우리나라 농업에 적합한 최적영농관리기술을 개발 할 수 있을 것으로 사료된다.

  • PDF

A Numerical Study for the Air Flow on Complex Terrain (복잡지형의 공기흐름에 대한 수치해석 연구)

  • Park, Mi Sun;Jeong, Hae Sun;Jeong, Hyo Joon;Hwang, Won Tae;Kim, Eun Han;Han, Moon Hee;Kim, Hey Suk
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • The interpretation on the diffusion of radiation contaminants in air is usually to apply a Gaussian plume equation that obtains normal distributions in stable air flow conditions to draw a conservative conclusion. In this study, a numerical study using computational fluid dynamics methods was performed to interpret the air flow pattern and the diffusion of the radiation contaminants at the Wolseong nuclear power plants, and a more detailed solution can be obtained than the Gaussian plume equation, which is difficult to use to simulate complex terrains. The results show that a significant fluctuation of air flow in the terrain appears in the case of a northwester and southeaster because of the mountain located in the northwest and the sea located in the south-east. The northwesterly air flow shows the most unstable flow in the vertical direction when it passes over the terrain of mountain. The stable southeasterly air flow enters into the nuclear power plant from the sea, but it becomes unstable rapidly because of the interference by the building and the terrain. On the other hand, in the case of a northeaster and southwester, a small interruption of air flow is caused by the terrain and wake behind the buildings of nuclear power plants.

Removal of Volatile Organic Contaminant(toluene) from Specific Depth in Aquifer Using Selective Surfactant-Enhanced Air Sparging (계면활성제와 폭기를 이용한 대수층의 특정깊이에 존재히는 휘발성 유기오염물질 (톨루엔)의 휘발제거)

  • Song, Young-Su;Kwon, Han-Joon;Yang, Su-Kyeong;Kim, Heon-Ki
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.565-571
    • /
    • 2010
  • An innovative application of surfactant-enhanced air sparging(SEAS) technique was developed in this study. Using a laboratory-scale physical model packed with water-saturated sand, air sparging was implemented to remove water-dissolved toluene that was introduced into a specific depth of the system with finite vertical width prior to sparging. An anionic surfactant(Sodium dodecylbenzene sulfonate) was introduced into the contaminated layer as in dissolved form in the toluene-contaminated solution for SEAS, whereas no surfactant was applied in the control experiment. Due to the suppressed surface tension of water in the surfactant(and toluene)-containing region, the toluene removal rate increased significantly compared to those without surfactant. More than 70% of the dissolved toluene was removed from the contaminated layer for SEAS application while less than 20% of toluene was removed for the experiment without surfactant. Air intrusion into the contaminated layer during sparging was found to be more effective than that without surfactant, enhancing air contact with toluene-contaminated water, which resulted in improved volatilization of contaminant. This new method is expected to open a new option for remediation of VOC(volatile organic compound)-contaminated aquifer.

Investigation of SO2 effect on OMI-TOMS and OMI-DOAS O3 in volcanic areas with OMI satellite data (OMI 위성자료를 이용한 화산지역 고농도 이산화황 환경에서의 TOMS 오존과 DOAS 오존의 비교연구)

  • Choi, Wonei;Hong, Hyunkee;Park, Junsung;Kim, Daewon;Yeo, Jaeho;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.599-608
    • /
    • 2015
  • In this present study, we quantified the $SO_2$ effect on $O_3$ retrieval from the Ozone Monitoring Instrument (OMI) measurement. The difference between OMI-Total Ozone Mapping Spectrometer (TOMS) and OMI-Differential Optical Absorption Spectrometer (DOAS) total $O_3$ is calculated in high $SO_2$ volcanic plume on several volcanic eruptions (Anatahan, La Cumbre, Sierra Negra, and Piton) from 2005 through 2008. There is a certain correlation ($R{\geq}0.5$) between the difference and $OMI-SO_2$ in volcanic plumes and the significant difference close to 100 DU. The high $SO_2$ condition found to affect TOMS $O_3$ retrieval significantly due to a strong $SO_2$ absorption at the TOMS $O_3$ retrieval wavelengths. Besides, we calculated the difference against various $SO_2$ levels. There is the considerable difference (average = 32.9 DU; standard deviation = 13.5 DU) in the high $OMI-SO_2$ condition ($OMI-SO_2{\geq}7.0DU$). We also found that the rate of change in the difference per 1.0 DU change in middle troposphere (TRM) and upper troposphere and stratosphere (STL) $SO_2$ columns are 3.9 DU and 4.9 DU, respectively.

S-velocity and Radial Anisotropy Structures in the Western Pacific Using Partitioned Waveform Inversion (분할 파형 역산을 사용한 서태평양 지역 S파 속도 및 방사 이방성 구조 연구)

  • Ji-hoon Park;Sung-Joon Chang;Michael Witek
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.365-384
    • /
    • 2023
  • We applied the partitioned waveform inversion to 2,026 event data recorded at 173 seismic stations from the Incorporated Research Institutions for Seismology Data Managing Center and the Ocean Hemisphere network Project to estimate S-wave velocity and radial anisotropy models beneath the Western Pacific. In the Philippine Sea plate, high-Vs anomalies reach deeper in the West Philippine basin than in the Parece-Vela basin. Low-Vs anomalies found at 80 km below the Parece-Vela basin extend deeper into the West Philippine Basin. This velocity contrast between the basins may be caused by differences in lithospheric age. Low-Vs anomalies are observed beneath the Caroline seamount chain and the Caroline plate. Overall positive radial anisotropy anomalies are observed in the Western Pacific, but negative radial anisotropy is found at > 220 km depth on the subducting plate along the Mariana trench and at ~50 km in the Parece-Vela basin. Positive radial anisotropy is found at > 200 km depth beneath the Caroline seamount chain, which may indicate the 'drag' between the plume and the moving Pacific plate. High-Vs anomalies are found at 40 ~ 180 km depth beneath the Ontong-Java plateau, which may indicate the presence of unusually thick lithosphere due to underplating of dehydrated plume material.

Plume Structure Analysis of an Axisymmetric Supersonic Micro-nozzle at the Various Pressure Ratios (압력비가 변할 때 축대칭 초음속 노즐의 플룸 구조 해석)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Yong-Sseok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2862-2867
    • /
    • 2007
  • The steady non-reacted compressible flow field in a symmetric micro-thruster, which is used for the accurate attitude control of a satellite, is analyzed varying the nozzle pressure ratio (NPR) to investigate the plume characteristics. The nozzle throat diameter is 0.06 inch and the area ratio is 56. The recirculation region is found just behind the normal shock at the several NPRs due to the locally adverse pressure gradient along the nozzle centerline when the environmental pressure is atmospheric. This phenomenon, the cause of flow loss, is similar to the flow behind a blunt body. As NPR increases the location of Mach disk, characteristics of the normal shock, moves downstream and its strength increases. The Mach number distribution appears in a wave-type patter after the normal shock because oblique shocks are reflected on the shock boundaries especially when NPRs are very high.

  • PDF

Performance Analysis and Configuration Design of the Thruster Nozzle for Ground-firing Test and Evaluation (지상연소시험평가용 추력기 노즐의 성능해석과 형상설계)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.10-16
    • /
    • 2012
  • A computational analysis of nozzle flow characteristics and plume structure is conducted to examine performance of the supersonic nozzle employed in a thruster for ground firing test. At first, flow simulations in two-dimensional converging-diverging nozzle are performed for the verification of computational capability as well as turbulence model validity. Axisymmetric converging-diverging nozzles for ground firing test are analyzed with the k-${\omega}$ SST model. A performance penalty caused by flow separation in a diverging section is observed in initially-designed nozzle. The performance could be enhanced by the modification of the diverging section of nozzle contour.

Numerical Prediction of the Base Heating due to Rocket Engine Clustering (로켓엔진 병렬화에 의한 저부가열의 수치적 예측)

  • Kim Seong Lyong;Kim Insun
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.18-25
    • /
    • 2004
  • Multi plume effects on the base heating have been Investigated with a CFD program. As the flight altitude increases, the plume expansion angle increases regardless of the single or clustered engine. The plume interaction of the clustered engine makes a high temperature thermal shear in the center of four plumes. At low altitude, the high temperature shear flow stays in the center of plumes, but it increases up to engine base with the increasing altitude. At high altitude, the flow from plume to base and the flow from base into outer free stream are supersonic, which transfers the high heat in the center of plumes to the base region. The radiative heat of the clustered engine varies from 220 kW/m² to 469 kW/m² with increasing altitude while those of the single engine are 10 kW/m² and 43.7 kW/m². And the base temperature of the clustered engine varies from 985K to 1223K, and those of the single engine are 483K and 726K. This big radiative heat of clustered engine can be explained by the active high temperature base flow and strong plume interactions.

An Axisymmetrical Study on the Secondary Reaction of Launch Vehicle Turbine Exhaust Gas Using the Detailed Chemistry Model (상세 화학반응 모델을 이용한 발사체 터빈 배기가스의 이차연소 해석의 축대칭 해석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.857-862
    • /
    • 2011
  • 3 dimensional turbine exhaust gas flow was simplified to an axisymmetrical flow and calculated with detailed chemistry models. GRI 35 species-217 reaction step model and simplified 11 species 15 reaction model was applied to the secondary reaction of the turbine exhaust gas and compared. All the model captured the secondary combustion on the base region, and the temperature was 600K higher than that without turbine exhaust gas. This means the local temperature of the base can be higher in the case of real 3 dimensional flow. The simplified model show the similar results to the GRI detailed chemistry model although the former affected the engine plume structure slightly.

  • PDF

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF