DOI QR코드

DOI QR Code

Investigation of SO2 effect on OMI-TOMS and OMI-DOAS O3 in volcanic areas with OMI satellite data

OMI 위성자료를 이용한 화산지역 고농도 이산화황 환경에서의 TOMS 오존과 DOAS 오존의 비교연구

  • Choi, Wonei (Department of Spatial Information Engineering, Pukyong National University) ;
  • Hong, Hyunkee (Department of Spatial Information Engineering, Pukyong National University) ;
  • Park, Junsung (Department of Spatial Information Engineering, Pukyong National University) ;
  • Kim, Daewon (Department of Spatial Information Engineering, Pukyong National University) ;
  • Yeo, Jaeho (Department of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Hanlim (Department of Spatial Information Engineering, Pukyong National University)
  • 최원이 (부경대학교 공간정보시스템공학과) ;
  • 홍현기 (부경대학교 공간정보시스템공학과) ;
  • 박준성 (부경대학교 공간정보시스템공학과) ;
  • 김대원 (부경대학교 공간정보시스템공학과) ;
  • 여재호 (부경대학교 공간정보시스템공학과) ;
  • 이한림 (부경대학교 공간정보시스템공학과)
  • Received : 2015.11.21
  • Accepted : 2015.12.03
  • Published : 2015.12.31

Abstract

In this present study, we quantified the $SO_2$ effect on $O_3$ retrieval from the Ozone Monitoring Instrument (OMI) measurement. The difference between OMI-Total Ozone Mapping Spectrometer (TOMS) and OMI-Differential Optical Absorption Spectrometer (DOAS) total $O_3$ is calculated in high $SO_2$ volcanic plume on several volcanic eruptions (Anatahan, La Cumbre, Sierra Negra, and Piton) from 2005 through 2008. There is a certain correlation ($R{\geq}0.5$) between the difference and $OMI-SO_2$ in volcanic plumes and the significant difference close to 100 DU. The high $SO_2$ condition found to affect TOMS $O_3$ retrieval significantly due to a strong $SO_2$ absorption at the TOMS $O_3$ retrieval wavelengths. Besides, we calculated the difference against various $SO_2$ levels. There is the considerable difference (average = 32.9 DU; standard deviation = 13.5 DU) in the high $OMI-SO_2$ condition ($OMI-SO_2{\geq}7.0DU$). We also found that the rate of change in the difference per 1.0 DU change in middle troposphere (TRM) and upper troposphere and stratosphere (STL) $SO_2$ columns are 3.9 DU and 4.9 DU, respectively.

본 연구에서는 Ozone Monitoring Instrument (OMI) 위성자료를 이용하여 2005년부터 2008년 사이에 활동하였던 Anatahan, La Cumbre, Sierra Negra, Piton 화산 플룸에 존재하는 고농도의 이산화황에 따른 Total Ozone Mapping Spectrometer (OMI-TOMS)와 Differential Optical Absorption Spectrometer (OMI-DOAS) 오존 전량 값의 차이를 정량적으로 비교하였다. 화산 플룸에서 OMI 센서로 측정한 이산화황 농도($OMI-SO_2$)에 따른 두 오존 전량 값의 사이의 차이에서 상당히 높은 상관성($R{\geq}0.5$)과 두 오존 전량 값 사이의 차이가 최대 100 DU에 가깝게 나는 것을 확인 할 수 있었다. 이는 선행연구에서 밝혀진 바와 같이 OMI-TOMS 알고리즘에서 사용하는 파장영역에서 이산화황의 흡수신호가 강하기 때문에, 이산화황의 농도가 높은 환경에서 오존 산출 시 이산화황의 영향을 받은 것으로 보인다. 이외에도 정량적인 분석을 위하여, 이산화황의 농도에 따라 구간별로 나누어 이산화황의 농도에 따른 두 오존 전량 값의 차이 및 이산화황의 농도가 1.0 DU 증가함에 따른 두 오존 전량의 차이를 계산하였다. 이산화황의 농도가 7.0 DU 이상의 높은 조건에서는 두 오존 전량 값 차이의 평균 값이 32.9 DU (표준편차 = 13.5 DU)로 이산화황의 농도가 증가함에 따른 두 오존 전량의 상당한 차이를 확인 할 수 있었다. 또한 TRM (Middle troposphere; Center of mass altitude (CMA) = 7.5 km) 과 STL (Upper troposphere and Stratosphere; CMA= 17 km) 층에서 1.0 DU의 이산화황의 농도가 증가하는 경우 두 오존 값의 차이는 3.9 DU와 4.9 DU로 계산되었다.

Keywords

References

  1. Anton, M., M. Lopez, J. Vilaplana, M. Kroon, R. McPeters, M. Banon, and A. Serrano, 2009. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula. Journal of Geophysical Research: Atmospheres (1984-2012), 114(D14).
  2. Balis, D., M. Kroon, M. Koukouli, E. Brinksma, G. Labow, J. Veefkind, and R. McPeters, 2007. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. Journal of Geophysical Research: Atmospheres (1984-2012), 112(D24).
  3. Bhartia, P., 2002. OMI Algorithm Theoretical Basis Document. Volume II, OMI Ozone Products. NASA-OMI, Washington, DC, USA
  4. Bracher, A., L. Lamsal, M. Weber, K. Bramstedt, M. Coldewey-Egbers, and J. Burrows, 2005. Global satellite validation of SCIAMACHY O 3 columns with GOME WFDOAS. Atmospheric Chemistry and Physics, 5, 2357-2368. https://doi.org/10.5194/acp-5-2357-2005
  5. Bramstedt, K., J. Gleason, D. Loyola, W. Thomas, A. Bracher, M. Weber, and J. Burrows, 2003. Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996-2000. Atmospheric Chemistry and Physics, 3, 1409-1419. https://doi.org/10.5194/acp-3-1409-2003
  6. Buchard, V., C. Brogniez, F. Auriol, B. Bonnel, J. Lenoble, A. Tanskanen, B. Bojkov, and P. veefkind, 2008. Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites. Atmospheric Chemistry and Physics, 8: 4517-4528. https://doi.org/10.5194/acp-8-4517-2008
  7. De Backer, H. and D. De Muer, 1991. Intercomparison of total ozone data measured with Dobson and Brewer ozone spectrophotometers at Uccle (Belgium) from January 1984 to March 1991, including zenith sky observations. Journal of Geophysical Research: Atmospheres (1984-2012), 96(D11): 20711-20719. https://doi.org/10.1029/91JD02159
  8. Hong, H., H. Lee, J. Kim, and Y. G. Lee, 2014. First comparison of OMI-DOAS total ozone using ground-based observations at a megacity site in East Asia: Causes of discrepancy and improvement in OMI-DOAS total ozone during summer. Journal of Geophysical Research: Atmospheres, 119: 10058-10067. https://doi.org/10.1002/2014JD021829
  9. Ialongo, I., G. Casale, and A. Siani, 2008. Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station. Atmospheric Chemistry and Physics, 8: 3283-3289. https://doi.org/10.5194/acp-8-3283-2008
  10. Kroon, M., J. P. Veefkind, M. Sneep, R. McPeters, P. Bhartia, and P. Levelt, 2008. Comparing OMI-TOMS and OMI-DOAS total ozone column data. Journal of Geophysical Research: Atmospheres (1984-2012), 113(D16).
  11. Krueger, A. J., 1983. Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer. Science, 220: 1377-1379. https://doi.org/10.1126/science.220.4604.1377
  12. Liu, X., P. Bhartia, K. Chance, R. Spurr, and T. Kurosu, 2010. Ozone profile retrievals from the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics, 10, 2521-2537. https://doi.org/10.5194/acp-10-2521-2010
  13. Loyola, D., and M.E. Koukouli, P. Volks, D.S. Balis, N. Hao, M. Van Roozendael, R.J.D. Spurr, W. Zimmer, S. Kiemle, C. Lerot, and J.-C. Lanbert, 2011. The GOME-2 total column ozone product: Retrieval algorithm and ground-based validation. Journal of Geophysical Research: Atmospheres (1984-2012), 116(D7).
  14. McKee, D., 1993. Tropospheric ozone: human health and agricultural impacts, CRC Press, Boca Raton, FL, USA
  15. McPeters, R., D. Heath, and B. Schlesinger, 1984. Satellite observation of $SO_2$ from El Chichon: Identification and measurement. Geophysical Research Letters, 11: 1203-1206. https://doi.org/10.1029/GL011i012p01203
  16. McPeters, R., S. Hollandsworth, L. Flynn, J. Herman, and C. Seftor, 1996. Long-term ozone trends derived from the 16-year combined Nimbus 7/Meteor 3 TOMS Version 7 record. Geophysical Research Letters, 23, 3699-3702. https://doi.org/10.1029/96GL03540
  17. McPeters, R., M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J.P. Veefkind, P.K. Bhartia, and P.F. Levelt, 2008. Validation of the AURA Ozone Monitoring Instrument total column ozone product. Journal of Geophysical Research: Atmospheres (1984-2012), 113(D15).
  18. OMI Team, 2009. Ozone Monitoring Instrument (OMI) Data User's Guide, OMI-DUG-3.0, NASA, http://so2.umbc.edu/omi/omi docs.html
  19. Solomon, S., D. Qin, M. Manning, Z. Chen, M.Marquis, K.B. Averyt, M. Tignor, and H.L.Miller, 2007. IPCC, Climate change 2007: thephysical science basis. Contribution of workinggroup I to the fourth assessment report of theintergovernmental panel on climate change.,Cambridge University Press, Cambridge, UnitedKingdom and New York, NY, USA

Cited by

  1. Retrieval from OMI Measurement in China vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.7