• Title/Summary/Keyword: 플로팅 구조

Search Result 102, Processing Time 0.029 seconds

A Study on Estimation Method of Concrete Sleeper Strength for Sleeper Floating Track using Rebound Hardness Test Method (반발경도법을 이용한 침목플로팅 궤도의 콘크리트 침목 강도추정 기법 연구)

  • Chung, Jee-Seung;Lee, Jeong-Sug;Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.277-282
    • /
    • 2022
  • The sleeper floating track (STEDEF) in this study was a track type in which a very soft resilience pad was installed under a relatively thin concrete sleeper (RC Block). Therefore it was expected that the resilience pad could affect the estimation results of the concrete strength. In this study, field applicability evaluation was performed to apply the rebound hardness test method, which was a general method for estimating the compressive strength of concrete in civil structures, to concrete sleepers of railway tracks. In order to analyze the strength estimation technique of concrete sleepers reflecting the characteristics of track structures different from those of civil structures, the parameter experiments that could affect the strength estimation results of concrete sleepers in a serviced line were performed. As a result of the study, the appropriate hitting position was suggested considering the shape of the concrete sleeper, and the difference in strength estimation results according to the condition of the concrete sleeper and supporting conditions was derived.

Natural Frequency Analysis of Sleeper Floating Track System using Modal Test Technique (모달시험기법을 이용한 침목플로팅궤도의 고유진동수 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.833-838
    • /
    • 2024
  • The urban railway sleeper floating track(STEDEF) is a structure that structurally separates the sleepers and the concrete bed using sleeper boots and resilience pads to reduce vibration transmitted to the concrete bed. Recently, the resilience pads of sleeper floating tracks that have been in use for more than 20 years are deteriorating. Accordingly, in order to evaluate the performance of the resilience pad, a static spring stiffness test is being performed after extracting the resilience pad. This evaluation technique is performed after replacing the resilience pad in use. However, the track natural frequency can change depending on the resilience pad spring stiffness and the uplift and subsidence of the concrete bed. In this study, modal testing technique was used to evaluate the track natural frequency. For this purpose, the sleeper boots material, resilience pad spring stiffness, and track natural frequency according to concrete bed uplift and subsidence were measured using modal tests at a laboratory scale. It was analyzed that the natural frequency of the sleeper floating track was directly affected by changes in the spring stiffness of the resilience pad. In addition, the change in natural frequency due to the uplift and subsidence of the concrete bed was also found to be large. Therefore, it is believed that the modal test technique presented in this study can be used to evaluate the resilience pad deterioration and voided sleepers.

Analysis method of the Superstructure on Floating Pontoon Considering the Construction Sequences (시공단계를 고려한 플로팅 폰툰의 상부구조물 해석기법)

  • Lee, Young-Wook;Chae, Ji-Yong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.225-232
    • /
    • 2012
  • In this research, the influence of additional vertical deformation of floating pontoon when dead load of each story is loaded during construction was investigated. The analysis procedure is presented for considering the influence of the additional deformation to calculate the additional moment of super-frame. Following the procedure, an example building with 3 storied steel frame was analyzed. Analysis method that taking no account for deformation of pontoon to the modeling was underestimated by ignoring design load following deformation of vertical load. By operating the load at the same time, design load under the influence of large deflection of model which whole modeling of floating structure was overestimated. So analysis method of floating structure considering the construction sequences demonstrated the suitable method.

다중 전원을 이용한 듀얼 랑뮤어 프루브 시스템을 통한 플라즈마 진단

  • Kim, Hyeok;Lee, U-Hyeon;Hwang, Gi-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.214-215
    • /
    • 2011
  • RF 플라즈마의 경우 일반적인 싱글 랑뮤어 프루브를 사용하여 I-V 파형을 구하는 경우에, 우리는 시평균한 값만을 구할 수 있다. 일반적인 플라즈마 반응 챔버의 구조상, 양 전극의 크기가 다르기 때문에, 시간에 따라 진동하는 플라즈마 포텐셜의 형태는 정확한 사인파의 형태가 아니다. 그렇기 때문에 플라즈마 포텐셜에 따라서 진동하는 데이터를 시평균한 값에는 DC 오프셋 성분이 나타난다. 이러한 DC 오프셋값은 랑뮤어 프루브를 통한 플라즈마 포텐셜 측정시에 오차로 나타난다. 우리는 DC 오프셋에 의한 에러값을 보정하기 위해 멀티 프루브를 사용할 수 있다. 가장 흔하게 쓰이는 듀얼 랑뮤어 프루브의 경우를 살펴보면, 내부의 전원이 플로팅되어 있으며 전압인가를 위한 회로 또한 접지에서 절연되어 있기 때문에, 플라즈마 포텐셜이 시간에 따라 흔들려도 전체적인 전위가 플라즈마 포텐셜과 함께 움직이기 때문에, 앞에서 말한 DC 오프셋에 의한 오차를 줄일 수있다는 장점이 있다. 그러나, 이를 위하여는 회로의 절대적인 플로팅이 필요하지만 실제 듀얼 랑뮤어 프루브의 전원 회로를 구현시에는, 트랜스포머 등을 사용하여 회로를 절연시켜도 회로에 기생적으로 발생하는 콘덴서 성분 때문에 플로팅에 영향을 받을 수 있다. 또한 양극과 음극 사이의 내부 임피던스가 다르게 나타난다. 실제로 기존의 듀얼 랑뮤어를 가지고 RF 플라즈마를 측정할 때에, 듀얼 랑뮤어 프루브의 두 팁 간에 서로 다른 전압-전류 파형이 나타나곤 한다. 이러한 두 팁간의 전압-전류 파형의 차이는 두 팁이 물리적으로 완전히 동일한 구조를 가질 수 없기 때문에 발생 하기도 하지만, 위에서 밝힌 원인에 의해서도 발생한다. 이로 인하여 듀얼 랑뮤어 프루브에 의한 I-V 파형은 이론 상 원점을 대칭으로 한 기함수의 형태이어야 하는데, 실제 측정 결과를 보면 이러한 대칭 형태의 모양을 보기 힘들다. 우리는 이에 이를 보정하기 위하여 위상이 180도 차이가 나는 두 개의 삼각파 발생 전원을 각각 듀얼 랑뮤어 프루브의 양 팁에 인가하여 두 팁 간의 내부 저항과 기생 임피던스 등을 일치시킨 프루브를 디자인하였으며 이 프루브를 이용한 실험에서, 비교적 완벽하게 원점에 대하여 대칭하는 I-V 커브를 구할 수 있었다. 이에 이 논문에서는 새로운 회로와 이 회로로 이루어진 듀얼 랑뮤어 프루브를 사용하여 플라즈마를 진단하는 방법에 대하여 기술한다.

  • PDF

Improved breakdown characteristics of Ga2O3 Schottky barrier diode using floating metal guard ring structure (플로팅 금속 가드링 구조를 이용한 Ga2O3 쇼트키 장벽 다이오드의 항복 특성 개선 연구)

  • Choi, June-Heang;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.193-199
    • /
    • 2019
  • In this study, we have proposed a floating metal guard ring structure based on TCAD simulation in order to enhance the breakdown voltage characteristics of gallium oxide ($Ga_2O_3$) vertical high voltage switching Schottky barrier diode. Unlike conventional guard ring structures, the floating metal guard rings do not require an ion implantation process. The locally enhanced high electric field at the anode corner was successfully suppressed by the metal guard rings, resulting in breakdown voltage enhancement. The number of guard rings and their width and spacing were varied for structural optimization during which the current-voltage characteristics and internal electric field and potential distributions were carefully investigated. For an n-type drift layer with a doping concentration of $5{\times}10^{16}cm^{-3}$ and a thickness of $5{\mu}m$, the optimum guard ring structure had 5 guard rings with an individual ring width of $1.5{\mu}m$ and a spacing of $0.2{\mu}m$ between rings. The breakdown voltage was increased from 940 V to 2000 V without degradation of on-resistance by employing the optimum guard ring structure. The proposed floating metal guard ring structure can improve the device performance without requiring an additional fabrication step.

A New Dual-Gate SOI LIGBT by employing Separated Shorted Anode and Floating Ohmic Contact (분리된 단락애노드와 플로팅오믹접합을 사용한 새로운 SOI 이중게이트 수평형 절연게이트바이폴라트랜지스터)

  • Ha, Min-Woo;Lee, Seung-Chul;Oh, Jae-Keun;Jeon, Byung-Chul;Han, Min-Koo;Choi, Yearn-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1343-1345
    • /
    • 2001
  • 본 논문은 스냅백을 효과적으로 제거하고 순방향 전압 강하를 줄이는 새로운 구조의 분리된 이중 게이트 SOI SA-LIGBT를 제안하였다. 제안된 소자는 분리된 단락 애노드와 플로팅 오믹 접합의 적용을 통해 스냅백이 성공적으로 제거되었고, 순방향전압강하는 전류밀도가 100A/$cm^2$일 때 기존의 SA-LIGBT에 비교해서 2V 감소된다. 또한 턴-오프 특성도 분리된 단락 애노드를 적용하였기 때문에 SA-LIGBT보다 개선되었다.

  • PDF

The Evaluation of Track Impact Factor on the Various Track Type in Urban Transit (도시철도 궤도구조별 궤도충격계수 평가)

  • Choi, Jung-Youl;Park, Yong-Gul;Lee, Sang-Min
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.248-255
    • /
    • 2011
  • Impact factor of concrete and ballast track which has been used in Korea railway was applied to equation (1+0.513V/100) from AREA. As the use of this equation, overcapacity of track design might be occurred. Therefore, this study compared impact of ballast track (well, bad) and concrete track (sleeper embeded system, rail floating and sleeper floating) by field test to analyzing dynamic effect of track structure's characterstic and wheel load on service line. In addition, it suggested a method to generate reasonable impact factor on each track type.

Strength of Joint in Floating Structures Constructed with Precast Concrete Modules (프리캐스트 콘크리트 부유식 구조물의 모듈 접합부 강도)

  • Yang, In-Hwan;Kim, Kyung-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.197-204
    • /
    • 2012
  • The behavior of floating structures constructed with precast concrete modules is dependent of the behavior of joints between the concrete modules. To accurately predict the floating structure response under the ultimate loading, knowledge of joint behavior is essential. This study aims to investigate the structural behavior of concrete module joints under various configuration of joint and confining stress levels. The shear behavior, shear capacity and crack patterns of shear keys in concrete module have been studied. Test results indicated that the shear capacity of joints increased as shear key inclination increased. In addition, shear capacity of concrete module joint increased with the increase of confining stress levels. The test results were compared with the AASHTO design recommendations. The AASHTO design recommendations underestimated the shear strength of test specimens.

Evaluation on Damage Effect of Concrete Track induced by Underground Structure Displacement Behavior (지하구조물 변위거동에 따른 콘크리트궤도의 손상영향 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.839-844
    • /
    • 2024
  • This study analytically analyzed the impact of underground structure displacement behavior on track damage due to adjacent excavation work, ground deterioration, and changes in groundwater level. The concrete track that was the subject of the study was analyzed for sleeper floating track(STEDEF) and precast concrete slab track(B2S). Sleeper floating track is a track structure in which the concrete bed and sleepers are voided. precast concrete slab track is a track structure that induces the elastic behavior of the rail by assembling rails and fasteners using slabs. For numerical analysis, each concrete track, from rail to concrete bed, was modeled as three-dimensional elements. In addition, the displacement behavior of the underground structure was set as a variable to analyze the damage effect on the concrete bed. Using numerical analysis, the concrete bed stress due to uplift and subsidence was analyzed, and the level of crack effect was analyzed by comparing it to the tensile strength and shear strength. As a result of the analysis, it was found that the sleeper floating track was more vulnerable than the precast concrete slab track when the same uplift and subsidence occurred. In addition, uplift and subsidence, it was analyzed that the cracks range in the sleeper floating track was large.

A Study on the Structural Reinforcement of the Modified Caisson Floating Dock (개조된 케이슨 플로팅 도크의 구조 보강에 대한 연구)

  • Kim, Hong-Jo;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.172-178
    • /
    • 2021
  • In the ship repair market, interest in maintenance and repair is steadily increasing due to the reinforcement of prevention of environmental pollution caused by ships and the reinforcement of safety standards for ship structures. By reflecting this effect, the number of requests for repairs by foreign shipping companies increases to repair shipbuilders in the Southwest Sea. However, because most of the repair shipbuilders in the southwestern area are small and medium-sized companies, it is difficult to lead to the integrated synergy effect of the repair shipbuilding companies. Moreover, the infrastructure is not integrated; hence, using the infrastructure jointly is a challenge, which acts as an obstacle to the activation of the repair shipbuilding industry. Floating docks are indispensable to operating the repair shipbuilding business; in addition, most of them are operated through renovation/repair after importing aging caisson docks from overseas. However, their service life is more than 30 years; additionally, there is no structure inspection standard. Therefore, it is vulnerable to the safety field. In this study, the finite element analysis program of ANSYS was used to evaluate the structural safety of the modified caisson dock and obtain additional structural reinforcement schemes to solve the derived problems. For the floating docks, there are classification regulations; however, concerning structural strength, the regulations are insufficient, and the applicability is inferior. These insufficient evaluation areas were supplemented through a detailed structural FE-analysis. The reinforcement plan was decided by reinforcing the pontoon deck and reinforcement of the side tank, considering the characteristics of the repair shipyard condition. The final plan was selected to reinforce the side wing tank through the structural analysis of the decision; in addition, the actual structure was fabricated to reflect the reinforcement plan. Our results can be used as reference data for improving the structural strength of similar facilities; we believe that the optimal solution can be found quickly if this method is used during renovation/repair.