• Title/Summary/Keyword: 플렉셔

Search Result 34, Processing Time 0.016 seconds

Design of 3-Axis Focus Mechanism Using Piezoelectric Actuators for a Small Satellite Camera (소형 위성 카메라의 압전작동기 타입 3-축 포커스 메커니즘 설계)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 2018
  • For Earth observation, a small satellite camera has relatively weak structural stability compared to medium-sized satellite, resulting in misalignment of optical components due to severe launching and space environments. These alignment errors can deteriorate the optical performance of satellite cameras. In this study, we proposed a 3-axis focus mechanism to compensate misalignment in a small satellite camera. This mechanism consists of three piezo-electric actuators to perform x-axis and y-axis tilt with de-space compensation. Design requirements for the focus mechanism were derived from the design of the Schmidt-Cassegrain target optical system. To compensate the misalignment of the secondary mirror (M2), the focus mechanism was installed just behind the M2 to control the 3-axis movement of M2. In this case, flexure design with Box-Behnken test plan was used to minimize optical degradation due to wave front error. The wave front error was analyzed using ANSYS. The fabricated focus mechanism demonstrated excellent servo performance in experiments with PID servo control.

Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of pitch measuring uncertainty of a nano-accuracy AFM system (XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 나노 정밀도의 원자 현미경 피치 측정 불확도 평가)

  • Kim Dong-Min;Lee Dong-Yeon;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.96-103
    • /
    • 2006
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In the long range (about several tens of ${\mu}m$), measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100{\mu}m\times100{\mu}m$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. As a result, XY scanner can have good performance. Using this AFM system, 3um pitch specimen was measured. The uncertainty of total system has been evaluated. X and Y direction performance is different. X-direction measuring performance is better. So to evaluate only ID pitch length, X-direction scanning is preferable. Its expanded uncertainty(k=2) is $\sqrt{(3.96)^2+(4.10\times10^{-5}{\times}p)^2}$ measured length in nm.

패들형 블레이드를 장착한 힌지없는 로터 시스템의 회전시험

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.217-228
    • /
    • 2004
  • This paper presents the rotating test techniques and the results of the roating test of the small-scaled hingeless rotor system with composite paddle blades in hover and forward flight conditions. The small-scaled rotor system was designed using froude-scaled properties of full scale rotor system. Metal flexures and composite flexures were made as hub flexures by the same dynamic properties of rotor system. The rotating tests of hingeless rotor system installed in GSRTS at KARI were carried out to get lead-lag damping ratios and aerodynamic loads of the hingeless rotor system. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. 6-components balance was installed between hub and main shaft and straingauges on blades were instrumented for the measurements of aerodynamic loads of rotor system. Tests were performed on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively.

  • PDF

Study on Basic Characteristics of Hollow Piezoelectric Actuator for Driving Nanoscale Stamp (나노스템프 구동용 중공형 압전액추에이터 기본특성에 관한 연구)

  • Park, Jung-Ho;Lee, Hu-Seung;Lee, Jae-Jong;Yun, So-Nam;Ham, Young-Bog;Jang, Sung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1015-1020
    • /
    • 2011
  • Nanoimprint lithography has been actively investigated. This method can replicate a nanopatterned master stamp onto a thin polymer film on a silicon substrate and so on. In this study, a square-shaped hollow piezoelectric actuator is presented, which is newly developed. This actuator is used for driving a nanoscale stamp in nanoimprint lithography instead of a conventional electric motor. The fabricated prototype actuator has 95 layers and side lengths of 23 mm and 18 mm for the outer and inner squares, respectively. By adopting a novel process instead of the conventional forming process for fabricating a one-layer actuator, the one-layer is composed of four rectangular segments produced by sawing a ceramic film with a thickness of 0.3 mm. The basic characteristics on displacement and generation force of the fabricated prototype actuator are experimentally investigated. Furthermore, the displacement characteristics obtained by using a PI controller are tested and discussed.