• 제목/요약/키워드: 플렉셔

검색결과 34건 처리시간 0.024초

4절 링크구조를 응용한 플랙셔 힌지 기반 모듈형 나노포지셔너 (Modularized Flexure-Hinge Nanopositioner Based on Four-Bar-Link-Mechanism)

  • 채기운;배진현;정영훈
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.851-858
    • /
    • 2011
  • Nanopositioning technologies play an important role in the progress of electronics, optics, bio-engineering and various nano-scale technologies. As a result, various practical nanopositioning methods have been successfully introduced. Flexure mechanism is a valuable method in nanopositioning because of smooth and friction-free motion and the infinitesimal movement near to sub-nm. In this study a modularized nanopositioner based on parallelogram four-bar linkage structure with right-circular flexure hinge was developed. The positioning performance of a single axis nanopositioner and a XY nanopositioner which was extended from single axis one were demonstrated using control experiments. Consequently, it was shown that the developed single axis nanopositioner possessed high performance and could be extended to various multi-axis nanopositioners.

초소형 터보제트엔진의 고공환경시험용 추력측정시스템 개발 (Development of Thrust Measurement System for Small Turbojet Engine Altitude Test)

  • 이경재;강상훈;이보화;송재강;양수석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.379-380
    • /
    • 2009
  • 한국항공우주연구원 추진기관팀은 1999년 10월에 3,000 lbf 급 고공환경 엔진시험 설비를 갖추고 소형 가스터빈 엔진의 고공환경 성능시험에 이를 활용하고 있다. 하지만 새롭게 2008년부터 고공환경 성능시험을 진행하고 있는 엔진은 1,000 lbf 미만의 초소형 엔진으로써 기존 추력측정 시스템을 이용하여서는 정확한 추력의 측정을 보장할 수 없다. 본 논문에서는 초소형 엔진의 고공환경 성능시험 수행을 위한 추력대의 구축 과정을 다루고 있다.

  • PDF

극초정밀 다축 스테이지를 이용한 광소자 정렬 자동화에 관한 연구 (A Study on the Optical Element Alignment Automation using Multi-Axis Ultra Precision Stage)

  • 정상화;김광호
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.64-70
    • /
    • 2006
  • The optical element was usually used in optical devices and optical transfer devices, but it has been recently used in communication, computer and medical equipment. With the development of very high speed optical-communication, the development of the kernel parts of optical communication has also increased. Presently, the alignment of the optical element is time consuming, and an effective alignment algorithm has not yet to be developed. In this paper, the alignment automation of the optical element is studied. The ultra precision stage is applied to an optical element alignment to improve the accuracy of the alignment. The automation program of the optical element alignment is developed by LabVIEW programming to save the alignment time. The alignment algorithms of the optical element consist of field search and peak search algorithms.

고 분해능 반사경의 마운트 설계 (Mount Design for High-Resolution Mirrors)

  • 김광로;이영신
    • 한국군사과학기술학회지
    • /
    • 제17권1호
    • /
    • pp.142-148
    • /
    • 2014
  • The mirror which is considered in designing a MFD is off-axis primary one and its dimension is wide 556mm height 345mm. The MFD(Mirror Fixation Device) load specification is generated for the high resolution mirror. The optical WFEs for unit loads are calculated from mirror sensitivity analysis and they are compared with allocated allowable optical WFE. The parasite load for the MFD is calculated from their comparison. The MFD compliant with the parasite load is designed.

정밀 위치 결정 및 고하중 부담 능력을 지닌 6-자유도 스테이지의 설계 (Design of a 6-DOF Stage for Precision Positioning and Large Force Generation)

  • 신현표
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.105-112
    • /
    • 2013
  • This paper presents the structural design and finite element analysis of precision stage based on a double triangular parallel mechanism for precision positioning and large force generation. Recently, with the acceleration of miniaturization in mobile appliances, the demand for precision aligning and bonding has been increasing. Such processes require both high precision and large force generation, which are difficult to obtain simultaneously. This study aimed at constructing a precision stage that has high precision, long stroke, and large force generation. Actuators were tactically placed and flexure hinges were carefully designed by optimization process to constitute a parallel mechanism with a double triangular configuration. The three actuators in the inner triangle function as an in-plane positioner, whereas the three actuators in the outer triangle as an out-of-plane positioner. Finite element analysis is performed to validate load carrying performances of the developed precision stage.

SiGe HBT를 이용한 10Gbps 디멀티플렉서 설계 (10Gbps Demultiplexer using SiGe HBT)

  • 이상흥;강진영;송민규
    • 한국통신학회논문지
    • /
    • 제25권4A호
    • /
    • pp.566-572
    • /
    • 2000
  • 일반적으로 광통신 시스템은 전기적 신호를 광신호로 바꾸어 주는 송신부와 전송되어 온 광신호를 전기적 신호로 변환하여 부는 수신부 및 송수신부 간의 정보를 전송해 주는 경로인 정보채널로 구성된다. 광통신 시스템의 동작속도를 개선하기 위해서는 송신부 및 수신부 회로들의 고속화가 필요하다. 디멀티플렉서는 고 비트율을 갖는 하나의 직렬 스트림을 원래의 낮은 비트율을 갖는 여러 병렬 스트림들로 환원하는 장치로, 광통신 시스템의 수신부에 사용된다. 본 논문에서는 고속 및 저전력 소자로 주목을 받고 있는 에미터 크기가 2$\times$8um2 인 SiGe HBT를 사용하여 1 : 4 디멀티플렉셔를 설계하였다. 설계된 회로의 동작속도는 10Gbps, 입력전압 및 출력전압은 각각 800mVp-p와 400mVp-p, 20-80% 간의 상승시간 및 하강시간은 각각 37ps와 36ps이며, 전력소모는 1.40W이다.

  • PDF

Min-Max 알고리즘을 이용한 피에조 구동형 스테이지의 최적설계 및 성능평가 (Optimal Design and Performance Evaluation of PZT-driven Stage Using Min-Max Algorithm)

  • 최기봉;한창수
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.130-136
    • /
    • 2005
  • This paper presents an optimal design and the performance evaluation of two-axis nano positioning stage with round notched flexure hinges. A flexure hinge mechanism with round notched flexure hinges is to guide the linear motions of a moving plate in the nano positioning stage. A Min-Max algorithm is applied to the design of the flexure hinge mechanism for nano positioning stage. In the design process, the structure of the flexure hinge mechanism is fixed, then the radius of a round hole and the width of two round holes are chosen as design variables, and finally the do sign variables are calculated by the Min-Max algorithm. The machined flexure hinge mechanism, stack type PZTs for actuation and capacitance type displacement sensors for position measurement are assembled into the nano positioning stage. The experimental results of the manufactured nano positioning stage show the first modal resonance frequency of 197 Hz, the operating range of 40 um, and the resolution of 3 nm.

원자현미경용 XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 원자 현미경의 측정 불확도 평가 (Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of measuring uncertainty of AFM system)

  • 김동민;이동연;권대갑
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1438-1441
    • /
    • 2005
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In this system, measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100um\times{100um}$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. Using this AFM system, 3um pitch specimen was measured. As a result, the uncertainty of total system has been evaluated.

  • PDF

압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계 (Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation)

  • 문준희;이봉구
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.

6-자유도 초정밀 위치 결정 스테이지의 비선형성 식별을 위한 로스트 모션 해석 (Lost Motion Analysis for Nonlinearity Identification of a 6-DOF Ultra-Precision Positioning Stage)

  • 신현표;문준희
    • 한국정밀공학회지
    • /
    • 제32권3호
    • /
    • pp.263-268
    • /
    • 2015
  • This paper describes lost motion analysis for a novel 6-DOF ultra-precision positioning stage. In the case of flexure hinge based precision positioning stage, lost motion is generated when the displacement of actuator is not delivered completely to the end-effector because of the elasticity of flexure hinge. Consequently, it is need to compute amount of lost motion to compensate the motion or to decide appropriate control method for precision positioning. Lost motion analysis for the vertical actuation unit is presented. The analysis results are presented in two ways: analytic and numerical analyses. It is found that they closely coincide with each other by 1% error. In finite element analysis result, the amount of lost motion is turned out to be about 3%. Although, the amount is not so large, it is necessary procedure to check the lost motion to establish the control method.