• Title/Summary/Keyword: 플랫플레이트-기둥 접합부

Search Result 46, Processing Time 0.022 seconds

Seismic Performance of Post Tensioned Flat Plate Frames according to Slab Bottom Reinforcement (하부철근 유무에 따른 PT 플랫 플레이트 골조의 내진성능)

  • Park, Young-Mi;HwangBo, Jin;Ryu, Jong-Hyuk;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.233-236
    • /
    • 2008
  • This study evaluates the seismic performance of post-tensioned(PT) flat plate frames with or without slab bottom reinforcement. For this purpose, 3 and 9 story PT flat plate frames designed only considering gravity loads. This study conducts a nonlinear static pushover analysis. This study use an analytical model which is able to represent punching shear failure and fracture mechanism. The analytical results showed that seismic performance of PT flat plate frame is strongly influenced by the existence of slab bottom reinforcement through column. By placing slab bottom reinforcement in PT flat plate frame, lateral strength and deformation capacity are significantly increased.

  • PDF

Improvement and Evaluation of Seismic Performance of Flat Plate Slab-Column Joint Using High Ductile Fiber-Reinforced Mortar (고인성섬유 복합모르타르를 활용한 플랫 플레이트 슬래브-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong-Ryul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.341-349
    • /
    • 2012
  • Recently, as structures in Korea and other countries become much taller, larger, and more specialized, concrete used for constructions of these structures is required to have high performance characteristics. Especially, seismic performance of concrete must be improved to resist cyclic loading from earthquakes. Consequently, this study was performed to focus on developing optimal mixtures of high ductile fiber reinforced mortar with high ductility and durability, which have good serviceability, stability and reliability performances. Eventually, this material is expected to improve seismic performance of concrete structures such as load carrying capacity, ductility capacity, and energy dissipation capacity when applied to critical regions of flat plate slab-column joint. Ultimately, this research is intended to develop a material for basic designs and practical constructions of reinforced concrete structures. Test results showed that the maximum load carrying capacity, the ductility capacity, and the energy dissipation capacity of the test specimens titled RCFPP series were increased by 15%~34%, by 33%~37%, and by 2.14 times, respectively, compared to those of the standard specimen titled SRCFP.

Ductility Evaluation of Flat Plate Slab- Precast Concrete Shell Column Connection (플랫 플레이트 슬래브-중공 PC기둥 접합부의 연성평가)

  • Yang, Won-Jik;Park, Jin-Young;Yi, Waon-Ho;Ryu, Hong-Sik;Oh, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.75-76
    • /
    • 2009
  • Recently, Construction Business, is changing very quickly, exceedingly needs to slim down the expensive by material costs and term of works. Because of that reason, new technologies of construction studies are very popular. It is part of a Shell PC column. Therefore, intend of study was to investigate the response of column-slab connection of Shell PC column and flat plate slab that has been widely used in high rise buildings.

  • PDF

Influence of Column Aspect Ratio on the Punching Shear Strength of Flat Plate Slab-Column Edge Connections (플랫 플레이트 슬래브-외부기둥 접합부의 뚫림전단강도에 대한 기둥 형상비의 영향)

  • Shin, Sung-Woo;Choi, Myung-Shin;Kim, Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • The aim of this study is to investigate punching shear strength of exterior connections in the flat plate structure with rectangular column. To inspect the effect of column aspect ratios on the punching shear behavior, eight specimens for exterior connection were made and tested. In this experimental program the length of critical perimeter was kept constant, while column aspect ratio varied from 2.0 to 4.5. Two levels of concrete strength and slab reinforcement ratio were also considered. As the column aspect ratio increased, the punching shear strengths are decreased. The decrement of punching shear strength was small in specimens with high aspect ratio of column.

A Study on Unbalanced Moment of Flat Plate Exterior Connections (플랫 플레이트 외부접합부의 불균형모멘트에 관한연구)

  • Choi, Hyun-Ki;Beck, Seong-Woo;Back, Young-Soo;Jin, Eon-Sik;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1-4
    • /
    • 2008
  • Flat plate slab has been widely used in high rise building for its remarkable advantages. However, Flat plate structures under lateral load are susceptible to punching shear of the slab-column connection. Exterior slab-column connections has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connections is susceptible to punching shear failure. For that reason, this study compare ACI 318-05 to CEB-FIP MC 90 that is based on experiment results and existing data of flat plate exterior connections. This study shows that compared to CEB-FIP MC 90 is more exact about eccentric shear stress, unbalanced moment and Both of all are not suitable in large column aspect ratio. Considering gravity shear ratio, These are suitable but design condition only consider gravity shear ratio. So these should be considered differences from change of design condition

  • PDF

An Analysis on Punching Shear of Two-way Void Slab (이방향 중공슬래브-기둥 접합부 뚫림전단성능의 해석적 평가)

  • Lee, Yung Eun;Ryu, Jaeho;Ju, Young Kyu;Kim, Sang Dae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • 최근 국내외에서 친환경건축물에 관한 관심이 매우 높아짐으로 인해 콘크리트의 물량을 절감하여 이산화탄소량을 줄이는 중공슬래브는 다양한 형태로 세계적으로 개발이 되고 있는 추세이다. 특히 이방향 중공슬래브는 환경적인 측면에서 이방향 중공슬래브는 중공부 생성에 재생플라스틱을 활용하여 폐자원을 재사용하고, 콘크리트와 철근의 사용량 절감에 따른 화석에너지 및 이산화탄소 발생량을 감소한다는 장점이 있다. 또한 시스템 측면에서 이방향 중공슬래브는 기존의 철근콘크리트 플랫플레이트 바닥구조 시스템의 자중을 절감하여 구조체를 경량화 시키고, 이에 따라 장스팬 구현이 가능하며, 단열효과가 뛰어나다. 이와 같이 이방향 중공슬래브는 장점이 많지만 플랫플레이트 슬래브의 취약점인 뚫림전단 파괴에 주의해야 한다. 이에 본 연구에서는 선행으로 실시된 이방향 중공슬래브-기둥 접합부 뚫림전단 성능평가 실험을 바탕으로 하여 경량체가 이방향 중공슬래브-기둥 접합부 뚫림전단 성능에 미치는 영향을 살펴보기 위해 범용 유한요소해석 프로그램인 ABAQUS를 사용하여 경량체량 및 위치를 주요변수로 한 해석적인 변화를 검토하였다. 본 연구를 통해 경량체가 삽입된 이방향 중공슬래브의 뚫림전단 성능에 대해, 해석결과 경량체 량과 위치에 따라 최대 뚫림전단강도는 기준 실험체에 비해 74.3%, 73%의 강도저하를 나타내는 것으로 알 수 있었다. 이는 실험상의 강도저하 값인 84.1%, 56.4%와 다소 차이가 있으며, 해석에서 중공부 주위의 응력집중 현상이 제대로 반영되지 않은 것으로 판단된다. 또한 이방향 슬래브에 경량체를 삽입 할 경우 경량체가 시작하는 부분에서 응력이 급격히 감소하는 현상이 나타났으며, 이러한 급격한 응력감소는 기둥 주위 위험단면의 변화를 가져오는 것으로 추정된다. 즉, 위험단면의 변화는 기둥으로부터 경량체 사이의 거리에 따라 달라지며, 위험단면 내의 콘크리트 단면 손실은 뚫림전단 강도를 감소시킨다. 본 연구에서는 이방향 중공슬래브의 뚫림전단강도를 산정할 수 있는 근사식을 제안하였으며, 보다 정확한 이방향 중공슬래브의 뚫림전단강도의 산정식을 위해서는 위험단면의 변화와 콘크리트 단면손실로 인한 전단강도 저하의 관계에 대한 추가적인 연구가 필요하다.

  • PDF

Moment-Rotation Relationship and Effective Stiffness of Flat Plates under Lateral Load (횡하중을 받는 플랫플레이트의 모멘트-변형각 곡선과 유효강성)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.856-865
    • /
    • 2003
  • Current design provisions and guide for performance-based design do not accurately evaluate seismic performance of flat plate system. In the previous companion studies, parametric studies using nonlinear finite element analyses were performed to investigate behavior of the flat plate, and based on the numerical results, design methods that can predict the bending moment-carrying capacity and the corresponding deformability of the flat plate was developed. In the present study, a generalized moment-rotation relation of the flat plate was developed based on the previous studies and the numerical analyses. The proposed method was verified by the comparisons with existing experiments. In addition, the effective stiffness of the flat plate corresponding to 0.2 percent of lateral drift that is generally regarded as the serviceability limit was proposed, so as to evaluate conveniently deflection of the structure subject to wind load.

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Seismic Performance of Post Tensioned Flat Plate Structures according to Slab Bottom Reinforcement (하부 철근 유무에 따른 포스트 텐션 플랫 플레이트 골조의 내진성능 평가)

  • Han, Sang-Whan;HwangBo, Jin;Ryu, Jong-Hyuk;Park, Young-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.11-17
    • /
    • 2008
  • This study evaluates the seismic performance of post-tensioned flat plate structures with or without slab bottom reinforcement. For this purpose, 3 and 9 story frames were designed only considering gravity loads. This study conducts a nonlinear static pushover analysis. This study was an analytical model that is able to represent punching shear failure and fracture mechanism. The analytical results showed that the seismic performance of a post-tension flat plate is strongly influenced by the existence of slab bottom reinforcement through column. By placing slab bottom reinforcement in a PT flat plate frame, lateral strength and max drift capacity are significantly increased.