• Title/Summary/Keyword: 플랜트 동특성 해석

Search Result 7, Processing Time 0.022 seconds

A GUI Implementation of a Power Plant Dynamic Simulation System on Windows NT/2000 (원도즈 NT/2000에서의 발전플랜트 동특성 해석시스템 그래픽 사용자 인터페이스 구현)

  • 이동수;이기현;조창호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.197-201
    • /
    • 2002
  • APESS(Advanved Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is being developed by Doosan Heavy Industries & Construction Co., Ltd. This Paper represents the GUI implementation of APESS on Windows NT/2000 operating system.

  • PDF

Development of Dynamic Simulation Software for Power Plant and its Application to Once-Through Boiler (플랜트 동특성 해석용 소프트웨어 개발 및 초임계압 관류형 보일러에의 적용)

  • Lee, Ki-Hyun;Lee, Dong-Su;Cho, Chang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.656-661
    • /
    • 2000
  • In the recent trend of electric power supply market, a variable pressure operation supercritical once-through steam generator is highlighted as a thermal power plant for cycling load because of its superiority in load regulation. Almost all thermal power plants of the future are expected to be variable pressure operation supercritical once-through units. APESS(Advanced Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is under being developed by Korea Heavy Industries & Construction Co., Ltd. This paper present the introduction of APESS and the result of simulation for variable pressure operation supercritical once-through steam generator.

  • PDF

Development and Application of Process Model for Description of Load Change of Boiler Plant in High Load (고부하에서의 보일러 플랜트 부하변동 묘사를 위한 프로세스 모델 개발 및 적용)

  • Park, Jeong;Lee, Ki-Hyun;Yang, Li-Ming;In, Jong-Soo;Park, Seok-Ho;Kweon, Sang-Hyeok;Oh, Dong-Han
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.41-51
    • /
    • 1997
  • A dynamic mathematical model of a thermal power plant with a single drum-type boiler is described with the base on modular concept. The present process model, which is including full scope of the components and high load changes, is based on physical approach through lumped parameters. The module, which means a component of the power plant and must essentially depict the characteristics of the component well, might be interconnected using pressure nodal method in a arrangement determined by users. With the results of the load changes of 75 MW to 95 MW and 95MW to 75 MW with the rate of 3 MW/min, the applicability of the process model is examined connecting to DCS(Dispersion Control System), which has a real running logic of 100 MW real power plant.

  • PDF

Implementation of virtual plant using module concept for the dynamic simulation of drum type boiler (드럼형 보일러의 동특성 해석을 위한 모듈 개념의 가상 플랜트 구현)

  • 남채호;권상혁;노태정;이광식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.476-479
    • /
    • 1997
  • The focus of this paper is to implement of virtual plant using module concept for the dynamic simulation of drum type boiler and to simulate the control trends of dynamic characteristics. MAtlab & Simulink is used for implement virtual plant & analyzation the dynamics & control trends. They are available for analyzing the dynamic characteristics of drum type Boiler by means of applying well measured data to virtual plant.

  • PDF

Analytical Study for Seismic Capacity Enhancement for Non-structural Elements in Power Plants (발전플랜트 시설 내부 비구조요소의 내진 안전성 향상을 위한 해석적 연구)

  • Bang, Jin Soo;Kwon, Yangsu;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • In the case of power plant facilities, seismic stability of non-structural elements is important. In particular, Cabinet structures to which electrical equipment is attached, should have functional safety against earthquakes. Therefore, in this study the dynamic characteristics of non-structural elements inside existing power plant buildings were identified and the response level generated during dynamic behavior was analyzed. In addition, The steel plate dampers were adopted and adjusted to suit the size of the target equipment. In order to derive the optimal seismic reinforcement, the variables according to the attachment location were set and the responses were analyzed by the seismic movement input before and after reinforcement.

Analysis on the Dynamic Response of Vertical Pumps Subjected to Arbitrary Foundation Excitation (임의 기초여진에 의한 입형 펌프의 동적 응답해석)

  • 여운동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.57-64
    • /
    • 1990
  • It is important in design of vertical pumps to consider arbitrary foundation excitation in addition to rotor vibration due to unbalance. In this study, a model of a vertical pump was developed for the analysis of its dynamic response. The vertical pump was modeled with lumped masses and springs which represent mult-cylinderical and rotor structure. A dynamic simulation program was developed and numerical calculation on the above mentioned problems were carried out.

  • PDF

Analysis of Dynamic Characteristics of Water Injection Pump (물 분사 펌프의 동특성 분석)

  • Lee, Jong Myeong;Lee, Jeong Hoon;Ha, Jeong Min;Ahn, Byung Hyun;Kim, Won Cheol;Choi, Byeong Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1483-1487
    • /
    • 2013
  • Water injection pump outputs oil with high pressure during this process, seawater is injected into the well to recover the well pressure and maintain high productivity. A water injection pump has high productivity, and therefore, it serves as a key piece of equipment in marine plants. In this light, water injection pumps are being studied widely in industry. In this study, the rotor dynamics is analyzed to determine the natural frequency according to the bearing stiffness and operation speed change. This study aims to establish the pump reliability through critical speed, stability, and unbalance response analysis.