DOI QR코드

DOI QR Code

Analytical Study for Seismic Capacity Enhancement for Non-structural Elements in Power Plants

발전플랜트 시설 내부 비구조요소의 내진 안전성 향상을 위한 해석적 연구

  • 방진수 (경북대학교 건설방재공학과) ;
  • 권양수 (한국수력원자력(주) 중앙연구원) ;
  • 임홍재 (부산대학교 사회환경시스템공학부)
  • Received : 2019.11.26
  • Accepted : 2020.03.30
  • Published : 2020.04.30

Abstract

In the case of power plant facilities, seismic stability of non-structural elements is important. In particular, Cabinet structures to which electrical equipment is attached, should have functional safety against earthquakes. Therefore, in this study the dynamic characteristics of non-structural elements inside existing power plant buildings were identified and the response level generated during dynamic behavior was analyzed. In addition, The steel plate dampers were adopted and adjusted to suit the size of the target equipment. In order to derive the optimal seismic reinforcement, the variables according to the attachment location were set and the responses were analyzed by the seismic movement input before and after reinforcement.

원자력발전소와 같은 발전플랜트 시설의 경우 건물 자체뿐만 아니라 내부에 설치된 비구조요소의 내진안정성 또한 중요하다. 특히, 전기기기가 부착되는 캐비닛 구조물 등은 지진에 대비하여 기능적 안전성이 확보되어야 한다. 이에 따라 본 연구에서는 기존 발전플랜트 내부에서 운용 중인 전기기기 캐비닛 구조물의 동특성을 파악하고, 동적거동 시 발생되는 응답 수준을 분석하였다. 그리고 내진보강 방법 중 제진 방식을 적용하기 위해 강재 플레이트 댐퍼를 채택하고 대상기기의 크기에 적합하게 조정하였다. 또한, 최적의 보강방안을 도출하기 위해 부착위치에 따른 변수를 설정하고 보강 전·후의 지진동 입력에 의한 응답에 대하여 분석하는 연구를 수행하였다.

Keywords

References

  1. ABAQUS (2014), Abaqus Analysis user's Guide 6.14, Dassault Systems Simulia Corp., Providence, RI, USA.
  2. U.S. NRC (1987), Verification of seismic Adequacy of Mechanical and Electrical Equipment in Operating Reactors, Unresolved Safety Issue (USI) A-46, GL87-02.
  3. KAERI (2002), Technical Guide for seismic Fragility Analysis of NPP Structures and Equipments, TR-2071.
  4. KAERI (2003), Evaluation of High Frequency Ground Motion Effects on the Seismic Capacity of NPP Equipments, TR-2484.
  5. Lee, B.Y., Cho, C.R., Kim, W.J., Jeong, D.G., and Shon, J.Y. (2005), Dynamic Analysis and Structural Safety Evaluation of the Cabinet of a Reactor Safety System, Journal of the Korean Society of Precision Engineering, 22(12), 131-140.
  6. Lee, G.H., Kim, J.M., and Kim, S.Y. (2003), Seismic Retrofitting of Cabinet Structures in Nuclear Power Plant, EESK. Earthquake Eng., 7(5), 31-37.
  7. Koo, K.Y., Cui, Jintao., Cho, S.G. and Kim, D.K (2008), Seismic Response Prediction Method of Cabinet Structures in a Nuclear Power Plant Using Vibration Tests, EESK. Earthquake Eng., 12(5), 57-63.
  8. Eem, S.H., and Choi, I.K. (2018), Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake, EESK. Earthquake Eng., 22(3), 113-119.
  9. Kim, S.C. (2019), Case Study of Generating the ICRS for Electrical Cabinet in NPP, Proceedings of EESK Conference 2019, EESK, (2019): 155-156.
  10. K. L. Merz (1991), Generic Seismic Ruggedness of Power Plants Equipment, Rev. 1, EPRI NP-5223.
  11. K. L. Merz (1991), Seismic Ruggedness of Relays, EPRI NP-7147.
  12. Nie, J., Xu, J., and Costantino, C. (2007), P-CARES: probabilistic computer analysis for rapid evaluation of structures. Division of Fuel, Engineering and Radiological Research, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission.
  13. Ministry of the Interior and Safety (MOIS) (2017), Common Applications for Seismic Design, Ministry of the Interior and Safety, written in Korean.
  14. Youn, I.R., Kim, C.H., Do, C.G., and Jang, W. (2017), A Study on the Structural Performance of Steel Plate Damper, Journal of Korean Society of Steel Construction, 29(2), 159-167. https://doi.org/10.7781/kjoss.2017.29.2.159