• Title/Summary/Keyword: 플래핑 특성

Search Result 18, Processing Time 0.026 seconds

Trim Range and Characteristics of Autorotation(II): Advance Ratio Variation and Flapping Characteristics (자동회전의 트림 범위와 특성(II): 전진비 변화와 플래핑 특성)

  • Kim, Hak-Yoon;Choi, Seong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.498-504
    • /
    • 2011
  • The flapping characteristics and advance ratios at torque equilibrium state of autorotation were investigated when the airspeed, shaft angle, and pitch angle were varied. To simulate the airspeed increase, the aerodynamic data analyzed by using the compressible Navier-Stokes solver and Pitt/Peters inflow theory were used. Transient Simulation Method(TSM) was used to catch the torque equilibrium states. The maximum flapping angles at torque equilibrium state were correlated to the airspeed, shaft angle, and pitch angle. By comparing flapping behavior to the variation of advance ratio, the phenomenon that the extension of reverse flow area of retreating blade affects the characteristics of autorotation was qualitatively considered.

Numerical Investigation on the Flapping Wing Sound (플래핑 날개의 음향 특성에 대한 수치 연구)

  • Bae, Young-Min;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3209-3214
    • /
    • 2007
  • This study numerically investigates the unsteady flow and acoustic characteristics of a flapping wing using a hydrodynamic/acoustic splitting method. The Reynolds number based on the maximum translation velocity of the wing is Re=8800 and Mach number is M=0.0485. The flow around the flapping wing is predicted by solving the two-dimensional incompressible Navier-Stokes equations (INS) and the acoustic field is calculated by the linearized perturbed compressible equations (LPCE), both solved in moving coordinates. Numerical results show that the hovering sound is largely generated by wing translation (transverse and tangential), which have different dipole sources with different mechanisms. As a distinctive feature of the flapping sound, it is also shown that the dominant frequency varies around the wing.

  • PDF

The Effect of Aspect Ratio on the Aerodynamic Characteristics of an Insect-based Flapping Wing (곤충 모방형 플래핑 날개의 공력특성에 관한 가로세로비 효과)

  • Han, Jong-Seob;Chang, Jo-Won;Jeon, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.662-669
    • /
    • 2012
  • The effect of aspect ratio (AR) on the aerodynamic characteristics of a flapping wing was examined to analyze the design parameters of an insect-based MAV. The experimental model constructed with 4-bar linkages was operated in a water tank with the condition of a low Reynolds number. A water-proof micro-force load cell was fabricated and installed at the root of the wing which is made of a plexiglas. The wing shapes were based on the planform of a fruit fly wing. The ARs selected were 1.87, 3.74 and 7.48 and the Reynolds number was fixed at $10^4$. For AR=1.87 and 3.74, distinct lift peaks which indicate unsteady effects such as 'wake-capture' were observed at the moment of the start of the wing-stroke. However, for AR=7.48, no unsteady effects were observed. These phenomena were also observed in the delayed rotation case. The results indicate that a larger AR provides better aerodynamic performance for the insect-based flapping wing which can be applied in MAV designs.

A Study on Thrust Generation by Simultaneous Flapping Airfoils in Tandem Configuration (동시에 플래핑하는 직렬배치 익형의 추력 생성 연구)

  • Lee, Gwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.32-41
    • /
    • 2006
  • In this study, the thrust generation by simultaneous flapping airfoils in tandem configuration is parametrically studied with respect to flapping frequency, amplitude and relative location. Navier-Stokes solver with overset grid topology is employed to calculate the unsteady flowfields. The computation results indicate that when the two airfoils stroke in-phase - flapping phase lag is zero - the maximum propulsive efficiency and thrust can be obtained for most frequency and amplitude range. At a flapping amplitude of 0.2 chord and a reduced frequency of 0.75, the propulsive efficiency of aft airfoil is enhanced by about 37 % compared with that of forward airfoil. However, if flapping frequency exceeds some critical value, the strength of the leading edge vortex of aft airfoil is fortified by the trailing edge vortex of the forward airfoil, resulting in poor propulsive efficiency. It is also found that out-of-phase flapping has relatively low propulsive efficiency and thrust since vortical wake of the forward airfoil interacts with the leading edge vortex of aft airfoil in the unfavorable fashion. The total thrust and propulsive efficiency are shown to decrease with the horizontal miss distance of the aft airfoil. On the contrary, the vertical miss distance has little effect on the overall aerodynamic performance.

A Study on Aerodynamic Characteristics of Flapping Motion (플래핑 운동의 공기역학적 특성에 관한 연구)

  • Kim Yoon-Joo;Oh Hyun-Taek;Chung Jin Taek;Choi Hang-Cheol;Kim Kwang-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2005
  • Birds and insects flap their wings to fly in the air and they can change their wing motions to do steering and maneuvering. Therefore, we created various wing motions with the parameters which affected flapping motion and evaluated the aerodynamic characteristics about those cases in this study. As the wing rotational velocity was fast and the rotational timing was advanced, the measured aerodynamic forces showed drastic increase near the end of stroke. The mean lift coefficient was increased until angle of attack of $50^{\circ}$ and showed the maximum value of 1.0. The maximum mean lift to drag ratio took place at angle of attack of $20^{\circ}$. Flow fields were also visualized around the wing using particle image velocimetry (PIV). From the flow visualization, leading-edge vortex was not shed at mid-stroke until angle of attack of $50^{\circ}$. But it was begun to shed at angle of attack of $60^{\circ}$.

  • PDF

Prediction for Rotor Aerodynamics of Quadcopter Type Unmanned Aerial Vehicle Considering Gust and Flight Conditions (비행 조건의 영향을 고려한 쿼드콥터형 무인비행체의 로터 공력 특성 예측)

  • Park, SunHoo;Eun, WonJong;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.833-844
    • /
    • 2018
  • This paper aims to predict the aerodynamic characteristics of individual rotor for the gust and flight conditions. Transformation procedure into the wind frame is conducted to analyze the gust. Hover, forward, and climb flight conditions of an individual rotor are analyzed using the blade element momentum theory (BEMT) considering the rigid blade flapping motion. XFOIL is used to derive aerodynamic results. Validation for hover, forward flight, and climb conditions are conducted using the present BEMT. In addition, a static experimental environment is constructed. The experimental results and the present BEMT are compared and verified.

Structural and Aerodynamic Characteristics of A Flapping Wing with Changeable Camber Using A Smart Material (스마트 재료를 이용한 캠버 변화가 가능한 플래핑 날개 구조 및 공력 특성)

  • Kim, Dae-Kwan;Kim, Hong-Il;Kwon, Ki-Jung;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.390-396
    • /
    • 2007
  • In the present study, we have developed a flapping wing using a smart material to mimic the nature's flyers, birds. The wing consists of composite frames, a flexible PVC film and a surface actuator, and the main wing motions are flapping, twisting and camber motions. To change the camber, a Macro-Fiber Composite(MFC) is used as the surface actuator, and it's structural response is analyzed by the use of piezoelectric-thermal analogy. To measure the lift and thrust simultaneously, a test stand consisting of two load cells is manufactured. Some aerodynamic tests are performed for the wing in a subsonic wind tunnel to evaluate the dynamic characteristics. Experimental results show that the main lift is mostly affected by the forward velocity and the pitch angle, but the thrust is mostly affected by the flapping frequency. The effect of the camber generated by the MFC actuator can produce the sufficient lift increment of up to 24.4% in static condition and 20.8% in dynamic condition.

Study on the Analysis of Structural Dynamic Characteristics and Modal Test of Unmanned Helicopter Rotor Blades (무인헬리콥터 로터 블레이드의 구조적 진동특성 분석 및 시험에 관한 연구)

  • 정경렬;이종범;한성호;최길봉
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.215-224
    • /
    • 1995
  • In this paper, the three-dimensional finite element model is established to investigate the structural dynamic characteristics of rotor blade using a finite element analysis. Six natural frequencies and mode shapes are calculated by computer simulation. The first three flapping modal frequencies, the first two lead-lag modal frequencies, and the first feathering modal frequency are validated through comparison with the modal test results of the fixed rotor blade. The computer simulation results are found in good agreement with experimentally measured natural frequencies. The important results are obtained as follows: (1) Natural frequencies are changed due to the variation of rotational speed and fiber angle of rotor blade, (2) Weak coupling between flapping mode shape and lead-lag mode shape are detected, (3) Centrifugal force has more effect on flapping modal frequency than lead-lag modal frequency.

  • PDF

Experimental Study on Flapping of a Coleoptera (딱정벌레목 곤충의 날갯짓에 대한 실험적 연구)

  • Yoo, Yong-Hoon;Jang, Doo-Hwan;Park, Hoon-Cheol;Byun, Yong-Hwan;Byun, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • A flow visualization is conducted to investigate a flight characteristics of a Coleoptera and an effect of flapping elytra was considered in this study. Also the movements of outer wing(elytra) and inner wing is analyzed using High Speed Camera. As a result of this experiment, in case of flapping insect, three mechanisms to generate lift is confirmed. A small movement of outer wing(elytra) is confirmed and the effect of outer wing(elytra) is estimated.

Experimental Study on the Flight Characteristics of Dragonfly-type Model (잠자리 모방 모델의 비행특성에 대한 실험적 연구)

  • Ji, Young-Moo;Jung, Yeon-Gyun;Jung, Se-Young;Kim, Kwang-Jin;Uhm, Sang-Jin;Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1566-1569
    • /
    • 2008
  • The flow visualization is conducted in order to investigate an unsteady flight characteristic of a model dragonfly. The flapping wings are analyzed using smoke-wire and high speed camera. The results of this experiment show that three mechanisms and high incidence angle of the wings are responsible for the lift. The leading edge vortex, which is induced by the rapid acceleration of the wing at the beginning of a stroke, causes the lift enhancement. The delayed stall during the stroke and the fast supination and pronation of the wing near the end of each stroke are also responsible for the lift generation.

  • PDF