DOI QR코드

DOI QR Code

Prediction for Rotor Aerodynamics of Quadcopter Type Unmanned Aerial Vehicle Considering Gust and Flight Conditions

비행 조건의 영향을 고려한 쿼드콥터형 무인비행체의 로터 공력 특성 예측

  • Park, SunHoo (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Eun, WonJong (Research and Development Team of Networks Business, Samsung Electronics Co., Ltd.) ;
  • Shin, SangJoon (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2018.07.17
  • Accepted : 2018.09.03
  • Published : 2018.10.01

Abstract

This paper aims to predict the aerodynamic characteristics of individual rotor for the gust and flight conditions. Transformation procedure into the wind frame is conducted to analyze the gust. Hover, forward, and climb flight conditions of an individual rotor are analyzed using the blade element momentum theory (BEMT) considering the rigid blade flapping motion. XFOIL is used to derive aerodynamic results. Validation for hover, forward flight, and climb conditions are conducted using the present BEMT. In addition, a static experimental environment is constructed. The experimental results and the present BEMT are compared and verified.

본 연구에서는 무인 회전익기의 종류인 쿼드콥터의 로터 블레이드에 대해 바람 및 비행 조건의 따른 공력특성을 예측하고자 한다. 돌풍 및 비행 조건들을 고려하기 위해 바람의 좌표계 변환 개념을 제시하였다. 강체 블레이드 플래핑 운동방정식을 고려한 깃 요소 및 운동량 이론을 이용해 개별 로터의 제자리, 전진, 상승 비행을 해석하였다. XFOIL을 사용하여 공력결과를 도출하였고, 개발된 BEMT를 이용하여 제자리 비행, 전진, 상승 조건의 검증을 수행했다. 또한 제자리 비행 실험 환경 구축 및 실험 결과와 개발된 BEMT의 비교 및 검증을 수행하였다.

Keywords

References

  1. Lee, D., Lim, H., Kim. H. J., Kim, Y., and Seong, K. J., "Adaptive Image-Based Visual Servoing for an Underactuated Quadrotor System," Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4, 2012, pp. 1335-1353. https://doi.org/10.2514/1.52169
  2. Johnson, R. D., "Unmanned Aircraft System Traffic Management (UTM) Project," NASA ARC-E-DAA-TN55386, 2018.
  3. Mellinger, D., Michael, N., and Kumar, Vijay, "Trajectory generation and control for precise aggressive maneuvers with quadrotors," The International Journal of Robotics Research, Vol. 31, No. 5, 2012, pp. 664-674. https://doi.org/10.1177/0278364911434236
  4. Hoffmann, G. M., Huang, H., Waslander, S. L., and Tomlin, C. J., "Quadrotor Helicopter Trajectory Tracking Control," Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences, 2008.
  5. Bansal, S., Akametalu, A. K., Jiang, F. J., Laine, F., and Tomlin, C. J., "Learning Quadrotor Dynamics Using Neural Network for Flight Control," 2016 IEEE 55th Conference on Decision and Control (CDC) ARIA Resort & Casino, 2016.
  6. Theys, B., Dimitriadis, G., Hendrick, P., and Schutter, J. D., "Experimental and Numerical Study of Micro-Aerial-Vehicle Propeller Performance in Oblique Flow," Journal of Aircraft, Vol. 54, No. 3, 2017, pp. 1076-1084. https://doi.org/10.2514/1.C033618
  7. MacNeil, R., and Verstraete, D., "Blade element momentum theory extended to model low Reynolds number propeller Performance," The Aeronautical Journal, Vol. 121, No. 1240, 2017, pp. 835-857. https://doi.org/10.1017/aer.2017.32
  8. Khan, W., and Nahon, M., "A propeller model for general forward flight conditions," International Journal of Intelligent Unmanned Systems, Vol. 3, Issue 2-3, 2015, pp. 72-92. https://doi.org/10.1108/IJIUS-06-2015-0007
  9. McCrink, M., and Gregory, J. W., "Blade Element Momentum Modeling of Low-Re Small UAS Electric Propulsion Systems," 33rd AIAA Applied Aerodynamics Conference, AIAA AVIATION Forum, 2015.
  10. Michael, Ol., Cale, Z., and Logan, M., "Analytical-Experimental Comparison for Small Electric Unmanned Air Vehicle Propellers," 26th AIAA Applied Aerodynamics Conference, 2008.
  11. Diaz, P. V., and Yoon, S., "High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles," NASA-ARC-EDAA-TN49783, 2018.
  12. Leishman, J. G., Principles of Helicopter Aerodynamics, 2nd ed., Cambridge University Press, Cambridge, UK, 2006.
  13. Brandt, J. B., "Small-Scale Propeller Performance at Low Speeds," M.S. Thesis, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Illinois, 2005.
  14. Hoffmann, G. M., Huang, H., Waslander, S. L., and Tomlin, C. J., "Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment," Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, 2007.
  15. Theys, B., Dimitriadis, G., Andrianne, T., Hendrick, P., and Schutter, J. D., "Wind Tunnel Testing of a VTOL MAV Propeller in Tilted Operating Mode," International Conference on Unmanned Aircraft Systems (ICUAS), 2014.