DOI QR코드

DOI QR Code

The Effect of Aspect Ratio on the Aerodynamic Characteristics of an Insect-based Flapping Wing

곤충 모방형 플래핑 날개의 공력특성에 관한 가로세로비 효과

  • 한종섭 (한국항공대학교 항공우주 및 기계공학과) ;
  • 장조원 (한국항공대학교 항공운항학과) ;
  • 전창수 (한국항공대학교 항공우주 및 기계공학과)
  • Received : 2012.05.16
  • Accepted : 2012.07.20
  • Published : 2012.08.01

Abstract

The effect of aspect ratio (AR) on the aerodynamic characteristics of a flapping wing was examined to analyze the design parameters of an insect-based MAV. The experimental model constructed with 4-bar linkages was operated in a water tank with the condition of a low Reynolds number. A water-proof micro-force load cell was fabricated and installed at the root of the wing which is made of a plexiglas. The wing shapes were based on the planform of a fruit fly wing. The ARs selected were 1.87, 3.74 and 7.48 and the Reynolds number was fixed at $10^4$. For AR=1.87 and 3.74, distinct lift peaks which indicate unsteady effects such as 'wake-capture' were observed at the moment of the start of the wing-stroke. However, for AR=7.48, no unsteady effects were observed. These phenomena were also observed in the delayed rotation case. The results indicate that a larger AR provides better aerodynamic performance for the insect-based flapping wing which can be applied in MAV designs.

생체 모방형 초소형비행체의 설계 파라미터를 해석하기 위해 플래핑 날개의 공력특성에 관한 가로세로비의 효과가 조사되었다. 실험 모델은 4절 링크로 구성되었으며, 낮은 레이놀즈수 조건을 갖는 수조 내부에서 구동되었다. 미세힘 측정용 방수 로드셀이 제작되어 아크릴로 만든 날개의 뿌리에 설치되었다. 날개 형상은 초파리의 날개 모양을 기준으로 하였다. 선택된 가로세로비는 각각 1.87, 3.74, 7.48이었으며, 레이놀즈수는 $10^4$에 고정되었다. 가로세로비 1.87과 3.74에서는 후류포획과 같은 비정상효과를 나타내는 뚜렷한 양력 피크가 스트로크 초기에 관찰되었다. 그러나 가로세로비 7.48의 경우 상기 비정상 효과는 관찰되지 않았다. 이러한 물리적 특징은 후행회전인 경우에서도 동일하게 관찰되었다. 이와 같은 결과는 MAV 설계에 적용할 수 있는 곤충 모방형태의 플래핑 날개인 경우 높은 가로세로비의 날개가 향상된 공력성능을 제공한다는 것을 의미한다.

Keywords

References

  1. C. P. Ellington, "The Novel Aerodynamics of Insect Flight: Applications to Micro-Air Vehicles", J. Exp. Biol., Vol. 202, pp. 3439-3448
  2. T. Weis-Fogh, "Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production", J. Exp. Biol., Vol. 59, pp. 169-230
  3. C. P. Ellington, C. Berg, A. P. Willmott and A. L. R. Thomas, "Leading-edge Vortices in Insect Flight", Nature, Vol. 384, 1996, pp. 626-630 https://doi.org/10.1038/384626a0
  4. M. Dickinson, F-O Lehmann, S. P. Sane, "Wing Rotation and the Aerodynamic Basis of Insect Flight", SCIENCE, Vol. 284, pp. 1954-1960
  5. W. Shyy, Y. Lian, J. Tang, D. Viieru and H. Liu, Aerodynamics of Low Reynolds Number Flyers, Cambridge University Press, New York, 2008
  6. Wang, "Two Dimensional Mechanism for Insect Hovering", Phys. Rev. Lett. Vol. 85, pp. 2216-2219 https://doi.org/10.1103/PhysRevLett.85.2216
  7. M. Sun and J. Tang , "Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion", J. Exp. Biol., Vol. 205, 2002, pp. 55-70
  8. D. Lentink and M. H. Dickinson, "Biofluiddynamic scaling of flapping, spinning and translating fins and wings", J. Exp. Biol., Vol. 212, pp. 2691-2704
  9. D. Lentink and M. H. Dickinson, "Rotational accelerations stabilize leading edge vortices on revolving fly wings", J. Exp. Biol., Vol. 212, pp. 2705-2719
  10. Jong-seob Han, Jo won Chang, In-mo Kang and Sun-tae Kim, "Flow Visualization and Force Measurement of an Insect-based Flapping Wing," AIAA Paper 2010-66, 48th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 4-7 Jan 2010, Orlando, Florida.
  11. M. Yamamoto and K. Isogai, 2005, "Measurement of Unsteady Fluid Dynamic Forces for a Mechanical Dragonfly Model," AIAA Journal, Vol. 43, No. 12, pp. 2475-2480
  12. F-O Lehmann, S. P. Sane, and M. Dickinson, "The Aerodynamic Effects of Wing-wing Interaction in Flapping Insect Wings," J. Exp. Biol., Vol. 208, 2005, pp. 3075-3092 https://doi.org/10.1242/jeb.01744
  13. J. P. Whitney and R. J. Wood, "Aeromechanics of passive rotation in flapping flight", J. Fluid Mech., Vol. 660, pp. 197-220