DOI QR코드

DOI QR Code

Trim Range and Characteristics of Autorotation(II): Advance Ratio Variation and Flapping Characteristics

자동회전의 트림 범위와 특성(II): 전진비 변화와 플래핑 특성

  • 김학윤 (한서대학교 항공학부) ;
  • 최성욱 (항공우주연구원 스마트 무인기 그룹)
  • Received : 2011.01.04
  • Accepted : 2011.05.23
  • Published : 2011.06.01

Abstract

The flapping characteristics and advance ratios at torque equilibrium state of autorotation were investigated when the airspeed, shaft angle, and pitch angle were varied. To simulate the airspeed increase, the aerodynamic data analyzed by using the compressible Navier-Stokes solver and Pitt/Peters inflow theory were used. Transient Simulation Method(TSM) was used to catch the torque equilibrium states. The maximum flapping angles at torque equilibrium state were correlated to the airspeed, shaft angle, and pitch angle. By comparing flapping behavior to the variation of advance ratio, the phenomenon that the extension of reverse flow area of retreating blade affects the characteristics of autorotation was qualitatively considered.

속도와 샤프트각 그리고 피치 변화에 따른 토크 평형상태의 자동회전에서 플래핑 거동 특성과 전진비의 변화를 조사하였다. 속도 증가에 따른 압축성 효과를 모사하기 위해 압축성 Navier-Stokes 솔버로 해석된 2차원 데이터를 Pitt/Peters 유도흐름 이론과 함께 사용하였고 토크 평형상태에 대한 세 변수의 조합을 찾기 위해 과도모사법(TSM)을 이용하였다. 토크 평형상태에서 최대 플래핑각을 속도, 샤프트각, 피치와의 관계로 나타내고 전진비 변화와 비교함으로써 후진깃의 역풍영역 확대가 로터의 자동회전 특성에 관여하는 현상을 정성적으로 고찰하였다.

Keywords

References

  1. Hohenemser, K. H., “Aerodynamic Aspects of the Unloaded Rotor Convertible Helicopter”, Journal of the American Helicopter Society, Vol. 2, (1), pp. 147-174, Jan. 1957.
  2. Hickey, D. H., “Full-Scale Wind-Tunnel Tests of the Longitudinal Stability and Control Characteristics of the XV-1 Convertiplane in the Autorotating Flight Range”, NACA RM A55K21a, 1956.
  3. Floros, M. W., and Johnson, W., “Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration”, American Helicopter Society 4th Decennial Specialists’ Conference on Aeromechanics Proceedings, San Francisco, CA, Jan. 2004.
  4. Floros, M. W., and Johnson, W., “Stability and Control Analysis of the Slowed-Rotor Compound Helicopter Configuration”, Journal of the American Helicopter Society, Vol. 52, No. 3, pp. 239-253, 2007. https://doi.org/10.4050/JAHS.52.239
  5. Schank, T., "Optimal /Weroelastic Trim for Rotorcraft with Constrained, Non-Unique Trim Solutions" Ph.D. Thesis, School of Aerospace Engineering, Georgia Tech, Atlanta, U.S., Apr. 2008.
  6. Rigsby, J. M., "Stability and Control Issues Associated with Lightly Loaded Rotors Autorotating at High Advance Ratios", Ph.D. Thesis, School of Aerospace Engineering, Georgia Tech, Atlanta, U.S., Oct. 2008.
  7. Pahlke, K. and Chelli, E., “Calculation of Multibladed Rotors in Forward Flight Using a 3D Navier-Stokes Method”, 26th European Rotorcraft Forum, The Hague (nl), 26-29/09. 2000.
  8. Pomin, H. and Wagner, S., “Navier-Stokes Analysis of Helicopter Rotor Aerodynamics in Hover and Forward Flight”, Journal of Aircraft, Vol. 39, No. 5, Sep-Oct. 2002.
  9. Kim, H. Y., Sheen, D. J., and Park, S. O., “Numerical Simulation of Autorotation in Forward Flight”, Journal of aircraft, Vol. 46, No. 5, 2009, pp. 1642-1648. https://doi.org/10.2514/1.42209
  10. Wheatley, J. B. and Bioletti, C., “Wind-Tunnel Tests of a 10-Foot-Diameter Gyroplane Rotor”, NACA TR No. 536. 1935.
  11. 김학윤, “Super STOL 수송기 개념에 의한 고관성 Pre&Autorotating 로터의 공력 특성에 관한 연구”, 한국항공대학교 대학원 석사학위 논문, 2000년.
  12. http://www.cartercopters.com

Cited by

  1. An Exploratory Study on the Speed Limit of Compound Gyroplane(2) : Speed and Wing Sizing vol.43, pp.11, 2015, https://doi.org/10.5139/JKSAS.2015.43.11.978
  2. Developmental Trends of High Performance Rotorcraft and the Analytic Method of Autorotation vol.22, pp.3, 2014, https://doi.org/10.12985/ksaa.2014.22.3.060