• Title/Summary/Keyword: 플라스틱 결함

Search Result 775, Processing Time 0.025 seconds

Oil Fence Durability Enhancement for Marine Environmental Protection : Improvement of Inspection Process (해양환경 보호를 위한 오일펜스의 내구성 향상 : 검정제도 개선 방향)

  • Jang, Pankil;Seo, Jeong Mog;Lee, Heejin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.731-736
    • /
    • 2021
  • Oil fences effectively prevent the spread of oil spilled in the sea, thereby reducing the damage to the marine environment. However, the fence is damaged by oil and structures at the accident site and is discarded. When incinerated disposal method for discarded fences, fine dust, and harmful materials are generated. Moreover, as a part of the damaged fence is dumped into the sea, it may cause secondary environmental pollution, such as microplastics. Therefore, in this study, durability was measured using the most common solid foam type oil fences. As a result, the reduction rate of after five days of contact was 13 % in seawater and 3 % in oil, affected by temperature changes. Thus, the durability of the fence should be improved because it is exposed to seawater and oil and affected by wind, light, and waves depending on the weather conditions. Therefore, we suggest a method to improve the oil fence inspection to strengthen the durability of the fence's fabric part.

Preparation of MA-PLA Using Radical Initiator and Miscibility Improvement of PLA/PA11 Blends (라디칼 개시제를 이용한 MA-PLA 제조 및 바이오플라스틱 PLA/PA11 블렌드의 상용성 개선)

  • Lee, Jong-Eun;Kim, Han-Eol;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • Recently, various investigation of vegetable oil which is extracted from natural resources is being progressed because of its low cost and environmental aspect. However, double bonds in vegetable oil should be substituted to other high reactive functional group due to its low reactivity for synthesizing bio-polymeric materials. ${\alpha}$-eleostearic acid, which is consist of conjugated triene, is the main component of tung oil, and the conjugated triene allows tung oil to have higher reactivity than other vegetable oil. In this study, tung oil is copolymerized with styrene and divinylbenzene to make thermoset resin without any substitution of functional group. Thermal and mechanical properties are measured to investigate the effects of the composition of each monomer on the synthesized thermoset resin. The result shows that the products have only one Tg, which means the synthesized thermoset resins are homogeneous in molecular level. Mechanical properties show that tung oil act as soft segment in the copolymer and make more elastic product. On the other hand, divinylbenzene acts as hard segment and makes more brittle product.

Convergence Study on Damage and Static Fracture Characteristic of the Bonded CFRP structure with Laminate angle (적층 각도를 가진 CFRP 접착 구조물의 파손 및 정적 파괴 특성에 관한 융합 연구)

  • Lee, Jung-Ho;Kim, Eundo;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.155-161
    • /
    • 2019
  • As composite is the light weight material whose durability and mechanical property are more superior than the existing general material. By taking notice of the composite with light weight, this study was about to investigate the static fracture characteristic of the bonded CFRP structure jointed with adhesive. Also, CFRP double cantilever beam with the variable of laminate angle was designed and the static fracture analysis was carried out. The laminate angles of CFRP double cantilever beam designed for this study were $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ individually. As the study result, the specimen with the laminate angle of $45^{\circ}$ was shown to have the durability better than those with the layer angles of $30^{\circ}$ and $45^{\circ}$. It was checked that the specimen with the laminate angle of $30^{\circ}$ had the weakest durability among all specimens. The damage data of the bonded CFRP structure by laminate angle could be secured through this study result. As the damage data of bonded interface obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

Convergence Study on Damage of the Bonded Part at TDCB Structure with the Laminate Angle Manufactured with CFRP (CFRP로 제작된 적층각도를 가진 TDCB 구조물에서의 접착부의 파손에 관한 융합 연구)

  • Lee, Dong-Hoon;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.175-180
    • /
    • 2018
  • In this study, CFRP was manufactured with the laminate angle of $45^{\circ}$. The specimen of TDCB bonded with the adhesive for structure was designed by CATIA and the analysis was progressed by using the finite element analysis program of ANSYS. This study model was designed on the basis of British industry and ISO standard and the configuration factor(m) was established with variable according to the angle of model configuration. As the study result of this paper, the maximum deformations at the specimens with the tapered angles of $4^{\circ}$ and $8^{\circ}$ become most as 12.628 mm and least as 12.352mm respectively. Also, the maximum equivalent stresses at the specimens with the tapered angles of $6^{\circ}$ and $8^{\circ}$ become most as 9210.3 MPa and least as 4800.5 MPa respectively. The damage data of TDCB structure with the laminate angle which was manufactured with CFRP could be secured through this study result. As the damage data of TDCB structure bonded with CFRP obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

Carbon Footprint Analysis of Mineral Paper using LCA Method (전과정 평가기법을 활용한 미네랄 페이퍼의 탄소발자국 연구)

  • Kim, Byoung Jik;Kang, Seong Min;Lee, Jeongwoo;Sa, Jae Hwan;Kim, Ik;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.201-210
    • /
    • 2013
  • In recent years, with the rising interest to reduce greenhouse gas emissions, the demand for using environmentally friendly product with low greenhouse gas emission is increasing in the printing industry as well. In this study, the carbon footprint of environmentally friendly product mineral paper that uses less plastic and wood than normal printing paper materials was analyzed by utilizing the life cycle assessment (LCA) technique. An analysis utilizing the LCA technique was done per the Korea carbon footprint certification guidelines and, for scope of study, it included the premanufacturing stage and manufacturing stage except for the use and disposal stages. As a result of the study, the emission coefficient of the mineral paper was calculated to be $0.81kg\;CO_2eq/kg$ and the emission from electricity usage of the entire greenhouse gas emission was calculated to be 45.85% ($0.37kg\;CO_2eq/kg$). In order to reduce greenhouse gas emission, required are the efforts to reduce the environmental loads by using energies that have relatively lower environmental loads, such as improvement in electricity usage efficiency and renewable energy, by increasing product completion rates during the manufacturing process of mineral paper.

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation (가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가)

  • Shin, Hyun Ho;Choi, Man Kwon;Cho, Myeong Whan;Kim, Jin Hyun;Seo, Tae Cheol;Lee, Choung Kuen;Kim, Seung Yu
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.438-443
    • /
    • 2022
  • In this study, the lateral loading test was performed to analyze structural performance of multi-span plastic greenhouse through full-scale experiment and numerical analysis. In order to analyze the lateral stiffness and stress, we installed 9 displacement sensors and 19 strain gauge sensors on the specimen, respectively, and load of l mm per minute was applied until the specimen failure. In the comparison between the full-scale experiment and the structural analysis results of a multi-span greenhouse with venlo-type roof according to bracing installation, there was a large difference in the lateral stiffness of the structure. By installing a brace system, the lateral stiffness measured near the side elevation of the specimen increased by up 44%. As the bracing joint used in the field did not secure sufficient rigidity, the external force could not be transmitted to the entire structure properly. Therefore, it is necessary to establish a bracing construction method and design standards in order for a greenhouse to which bracing applied to have sufficient performance.

Evaluating the Characteristics of Growth and Seedling Quality of Tetradium daniellii (Benn.) T. G. Hartley using Five Different Container Types (용기 종류에 따른 쉬나무 용기묘의 생장 및 묘목품질 특성)

  • Sung, Hwan In;Song, Ki Seon;Kim, Jong Jin;Choi, Kyu Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.374-384
    • /
    • 2022
  • There is an increasing demand for Tetradium daniellii seedlings due to their uses as alternative energy, for ecological restoration, and as a honey plant. This study was conducted to determine the optimum container for superior seedling production of T. daniellii. Experiments were performed using five plastic container types (500, 350, 320, 300, and 250 ml) for forestry facility cultivation. The height and root collar diameter growth of T. daniellii seedlings were significantly high in the 350-ml container. High growth appeared primarily in the container with a larger cavity volume and lower growing density. Root development was most active in full sunlight. The maximum dry matter production was observed in the 350-ml container, which was similar to the results of height and root collar diameter growth. QI, an index showing the quality of a seedling, was maximum at 0.97 in the 350-ml container. In conclusion, the 350-ml container is optimum for superior seedling production of T. daniellii.

Efficiency of Closed Cutting Propagation Affected by Closed Periods, Leaflet Number and Photoperiod in Rose (Rosa hybrida) (밀폐 기간, 소엽수 및 광주기에 따른 장미의 밀폐삽목 번식 효율)

  • Yang, Gyeong Rok;Jung, Hyun Hwan;Park, Ki Young;Song, Kwan Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.212-220
    • /
    • 2022
  • When it comes to single node leafy stem cuttings of rose (Rosa hybrida), environmental management such as air temperature, relative humidity, and light affect productivity. In order to investigate the effect of air temperature and relative humidity on the cutting success rate and rooted cuttings quality, a transparent airtight box was used to implement a closed system. We have also tried to find out the most effective photoperiod and the number of leaflets in closed system using artificial light (white LED, 104.0 µmol·m-2·s-1 photosynthetic photon flux density). The first experiment was conducted for a total of 6 weeks under 4 airtight period conditions. The number of roots and longest root length decreased as the airtight period increased. But there were no significant differences in the survival rate, shooting rate, and rooting rate according to airtight periods. In the second experiment the results indicated that survival and shooting rate were significantly affected by the photoperiod (0/24, 2/22, 4/20, 8/16, and 16/8 h), the number of leaflets (0, 2, and 4 leaflets) of the cuttings and their interaction. The survival rate was the highest in the 16-h day length and 4 leaflets. By considering survival rate and shooting rate with energy efficiency, the 8-h day length and 2 or 4 leaflets were judged to be the most effective.

Experimental Study on the Effect of Degree of Saturation on the Electrical Conductivity of Soils (포화도에 따른 흙의 전기전도도 변화에 대한 실험적 연구)

  • Ko, Hyojung;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.29-39
    • /
    • 2023
  • The degree of saturation determines the connectivity of void space and the particle surface. Thus, it greatly affects the electrical conductivity of soils. This study aimed to analyze the electrical conductivities of coarse grains with a high relevance of pore water conduction and fine grains with a high relevance of surface conduction based on the degree of saturation. It also aimed to express the electrical conductivity of unsaturated soils as a combination of surface and pore water conductions using the modified Archie's equation. Samples were prepared in a plastic cell equipped with four electrodes, and the electrical conductivity was measured based on the porosity at various degrees of saturation (40%~100%). The results demonstrate that Archie's equation can be used to express the electrical conductivity of coarse grains, with a saturation exponent of ~1.93 regardless of the pore water conductivity. However, the saturation exponent of fine grains varied considerably with pore water concentration. This variation can be attributed to the relative magnitude of surface conduction with respect to the electrical conductivity of soils at different pore water concentrations. Thus, the degree of saturation has varying effects on pore water conduction and surface conduction. Therefore, different saturation exponents must be used for pore water conduction and surface conduction to predict the electrical conductivity of unsaturated soils using the modified Archie's equation.