• Title/Summary/Keyword: 프린터 헤드

Search Result 28, Processing Time 0.032 seconds

Design of thermal inkjet print head with robust and reliable structure (크렉 방지를 위한 잉크젯 프린트 헤드 강건 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.337-342
    • /
    • 2022
  • Although printing technology has recently been widely used in IT fields including displays and fuel cells, residual and thermal stress are generated by a manufacturing process of stacking the layers of the print head and result in the substrate deformation and nozzle plate crack, which may cause ink leaks or not be ejected onto a desired region. Therefore, in this paper, we propose a new design of thermal inkjet print head with a robust and reliable structure. Diverse types of inkjet print head such as a rib, pillar, support wall and individual feed hole are designed to reduce the deformation of the substrate and nozzle plate, and their feasibility is numerically investigated through FEA analysis. The numerical results show that the maximum stress and deformation of proposed print head dramatically drops to at least 40~50%, and it is confirmed that there is no nozzle plate cracks and ink leakage through the fabrication of pillar and support wall typed print head. Therefore, it is expected that the proposed head shape can be applied not only to ink ejection in the normal direction, but also to large-area printing technology.

A Jet Strobe Signal Timing Control of Ink Jet Printer Head for Enhancement of Printing Speed and Quality (인쇄 속도 향상과 화질 개선을 위한 잉크젯 프린터 헤드의 액적 분사 신호 타이밍 제어)

  • Cho, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1727-1734
    • /
    • 2011
  • In this paper, a position control scheme of the ink droplet is presented for the high image quality and print speed ink jet printer. The proposed scheme estimates the impact position and compensates it by control of the jet strobe time based on the dynamic equations describing the moving trajectory of the ejected ink droplet. Compared to the conventional jet strobe control which is based on the simple synchronization with the position signal of the ink jet nozzle, the proposed control scheme provides more accurate impact position control while the carrier is moving with accelerated or decelerated speed as well as steady state speed with fluctuations. The availability of printing during the acceleration and deceleration states of the carrier moving enables the print speed up and the frame size down which means the cost down.

A Study on Printimage Enhancement and Realization of Electrothermal Printer Using Thermal Historic Management (열이력제어를 이용한 감열프린터의 인쇄이미지 향상 및 구현에 관한 연구)

  • 김영빈;허창우;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.213-216
    • /
    • 2002
  • The system realization for printimage enhancement of electrothermal printer using thermal historic management is presented. The thermal historic control technique reduces the blur that the high density thermal print head(TPH) and high speed printing in the 300dpi high is increased edge blur of printed image. The experiment result is that the system enhance the quality of print image.

  • PDF

EHD 원리를 이용한 정전기장 유도 잉크젯 프린터 헤드의 마이크로 Drop-on-Demand 제팅 성능 연구

  • Choe, Jae-Yong;Kim, Yong-Jae;Son, Sang-Uk;An, Gi-Cheol;Lee, Seok-Han;Go, Han-Seo;Nguyen, Vu Dat;Byeong, Do-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1947-1950
    • /
    • 2008
  • Printing technology is a very useful method in the several process of industrial fabrication due to noncontact and fast pattern generation. To make micro pattern, we investigate the electrostatic induced inkjet printer head for micro droplet generation and drop-on-demand jetting. In order to achieve the drop-on-demand micro droplet ejection by the electrostatic induced inkjet printer head, the pulsed DC voltage is supplied. In order to find optimal pulse conditions, we tested jetting performance for various bias and pulse voltages for drop-on-demand ejection. In this result, we have successful drop-on-demand operation and micro patterning. Therefore, our novel electrostatic induced inkjet head printing system will be applied industrial area comparing conventional printing technology.

  • PDF

The End of Optical Lithography\ulcorner (광 리소그래피의 최후\ulcorner)

  • 오혜근
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.276-277
    • /
    • 2003
  • 전체 반도체 소자 제조 공정의 40 %를 차지하고 있는 리소그래피 기술은 기억 소자뿐만 아니라 마이크로 프로세서, ASIC 등의 실리콘 소자와 군사 및 통신에 많이 사용되고 있는 화합물 반도체를 만드는 데도 쓰이고 있고, 요즈음은 DRAM 의 리소그래피 기술들을 LCD 등의 평판 표시 장치, 디스크 헤드, 프린터 헤드 및 MEMS(Micro-Electro-Mechanical System), 나노 바이오 칩 등의 제작에 응용하여 쓰고 있다. 리소그래피 기술은 생산 원가 면에서 제일 큰 비중을 차지하고 있을 뿐만 아니라 집적소자의 초고집적화 및 초미세화를 선도하는 기술이다. (중략)

  • PDF

Design of an Integrated Circuit for Controlling the Printer Head Ink Nozzle (프린터 헤드 노즐분사 제어용 집적회로설계)

  • 정승민;김정태;이문기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.798-804
    • /
    • 2003
  • In this paper, We have designed an advanced circuits for controlling the Ink Nozzle of Printer Head We can fully increase the number of nozzle by reducing the number of Input/Output PADs using the proposed new circuit. The proposed circuit is tested with only 20 nozzles to evaluate functional test using FPGA sample chip. The new circuit architecture can be estimated. Full circuit for controlling 320 nozzles was designed and simulated from ASIC full custom methodology, then the circuit was fabricated by applying 3${\mu}{\textrm}{m}$ CMOS process design rule.

Design of array typed inkjet head for line-printing (라인 프린팅을 위한 어레이 방식 잉크젯 헤드 설계)

  • Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.529-534
    • /
    • 2023
  • Although line printing technology is capable of high-speed and large area printing, residual stresses generated during the manufacturing process can deform the feedhole, causing nozzle plate crack or ink leaks. Therefore, in this paper, we propose a new thermal inkjet print head that is robust, reliable and more suitable for line-printing. The amount of deformation of the conventional line printing head measured through the experiment was converted into an equivalent load, and the validity of the load estimation method was verified through FEA analysis. In addition, in order to minimize deformation without increasing the head size, the head structure was designed to increase internal rigidity by reinforcing the unit nozzle with a pillar or support wall or by adding a support beam or dry/wet etched bridge. The FEA analysis results show that the feedhole deformation was reduced by up to 90%, and it is confirmed that the suggested print head with dry etched feedhole bridge operates normally without nozzle plate cracks and ink leakage through fabrication.

Efficient way to clean Solder Printer Nozzles

  • Kim, Young-Min;Kim, Chi-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.115-121
    • /
    • 2022
  • In surface mount technology (SMT), the screen printer, which is an equipment for applying solder cream, has a lot of poor coating as the pad becomes smaller. To solve this problem, a jet printer is being used recently. However, if the nozzle at the end of the valve applied to the jet printer head is not cleaned, solder cream remains or an error occurs. To prevent this, the nozzles should be cleaned periodically. In this paper, a more stable cleaning method than the existing technology is presented for the stable application of solder cream on a jet printer. In this method, cut a 35mm wide mujin cloth, wrap it in a roll, and rotate it with a DC geared motor on the other side to clean it. As a result, it was confirmed that the solder paste was not left on the nozzle surface and was well wiped when cleaning with about 2,000 dotting cycles.