• Title/Summary/Keyword: 프리텐션

Search Result 111, Processing Time 0.025 seconds

An Experimental Study on Allowable Compressive Stress at Prestress Transfer in Pre-Tensioned Concrete Members (프리텐션된 콘크리트 부재의 프리스트레스 도입시 허용압축응력에 관한 실험적 연구)

  • Lee, Jeong Yeon;Lee, Deuck Hang;Kim, Kang Su;Park, Min Kook;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In the previous research, allowable compressive stress was analyzed based on strength theory, in which primary effect factors on the allowable compressive stress, such as eccentricity ratio, section type, section size, prestress and self-weight moment, were considered. As its results, allowable compressive stress equations were proposed. As a series of the previous research, this paper presents an experimental study on the prestress at transfer of pre-tensioned members with different eccentricity ratios. The results shows that ACI318-08 and EC2-02 are unconservative for the members under low eccentricity ratios, and they are conservative for the members under high eccentricity ratios. Compared to the code provisions, the results indicates that the proposed equation reasonably well evaluates the allowable compressive stresses for those with different eccentricity ratios.

Stability Analysis and Design of the Pretension Soil Nailing System (프리텐션 쏘일네일링 시스템의 안정해석 및 설계)

  • Park Si-Sam;Kim Hong-Taek;Choi Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.197-206
    • /
    • 2004
  • The ground anchor support system may not be occasionally used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then could play important roles to reduce deformations mainly in the upper part of the nailed-soil excavation system as well as to improve local stability. In this study, a newly modified soil nailing technology named as the PSN (Pretension Soil Nailing), is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the PSN system. Also, proposed are techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear, Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors are analyzed. In addition, effects of the reduction of deformations expected by pretension of the soil nails are examined in detail throughout an illustrative example and the $FLAC^{2D}$ program analysis. And a numerical approach is proposed PSN system using the shear strength reduction technique with the $FLAC^{2D}$ program.

Time-Dependent Behavior Analysis of Pre-Tensioned Members Using High-Performance Concrete(HPC) (고성능 콘크리트(HPC)를 사용한 프리텐션 부재의 시간의존거동 해석)

  • Nam, Yoo-Seok;Cho, Chang-Geun;Park, Moon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.479-487
    • /
    • 2006
  • This paper deals with a research about the time-dependent behavior analysis for pre-tensioned high-performance concrete(HPC) members. By improving AASHTO-LRFD(2004) method for predicting the creep and shrinkage of normal concrete, and the relaxation of prestressing tendon, a time-dependent behavior analysis of high-performance concrete structures has been introduced. Two methods, the step-function method and the time-step method have been incorporated in the time-dependent analysis. The developed program can predict the initial and time-dependent losses of prestressing forces and the deflections of high-performance concrete structures. The present model has been verified by comparing with the experimental results from the test of time-dependent behaviors of pre-tensioned members using high-performance concrete. From this, the current model gives good relations with the experimental results, but the AASHTO method is not good for the prediction of time-dependent behaviors of high-performance concrete members.

Optimum Design of Truss Structures with Pretension Considering Bucking Constraint (프리텐션을 받는 트러스 구조물의 좌굴을 고려한 최적설계)

  • Kim, Yeon-Tae;Kim, Dae-Hwan;Lee, Jae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.197-208
    • /
    • 2010
  • An under-tension system is frequently employed for large-span structures to reduce the deflection and member size. In this study, a microgenetic algorithm was used to find the optimum cross-section of truss structures with an undertension cable under transverse loading. Maximum deflection, allowable stress, and buckling were considered constraints. The proposed approach was verified using a 10-bar truss sample that shows good agreement with the previous results. In the numerical results, minimum-weight design of the under-tension structure was performed for various magnitudes of pretension.

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block (프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증)

  • Park, Sangki;Kim, Jaehwan;Jung, Kyu-San;Seo, Dong-Woo;Park, Ki-Tae;Jang, Hyun-Ock
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.67-77
    • /
    • 2022
  • In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.

Proposals of Indeterminate Strut-Tie Model and Load Distribution Ratio for Strength Analysis of Pre-tensioned Concrete Deep Beams (프리텐션 콘크리트 깊은 보의 강도해석을 위한 부정정 스트럿-타이 모델 및 하중분배율의 제안)

  • Chae, Hyun-Soo;Ha, Sang-Yong;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.193-194
    • /
    • 2009
  • In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behavior of pre-tensioned concrete deep beams is presented. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the strength analysis of pre-tensioned concrete deep beams by using the strut-tie model approaches of current design codes.

  • PDF

Strengthening Design by External Pre-tensioning and Post-tensioning Methods for Steel-concrete Composite Girders using Rating Factor (내하율을 이용한 강합성보의 외부 프리텐션과 포스트텐션 보강 설계)

  • Choi, Dong-Ho;Yoo, Dong-Min;Jeong, Gu-Sang;Park, Kyung-Boo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.123-134
    • /
    • 2007
  • A method to determine the initial force of external tendon is proposed to improve the load carrying capacity in existing steel-concrete composite bridges. This method is applied to tensioning external tendons prior to and after concrete replacement for strengthening composite girders. A procedure to determine the number of tendon and initial tendon force is described with the proposed rating factor, which considers the increment of tendon force due to live loads. The method is applied to the improvement of rating factor in an existing composite bridge and its validity is confirmed.

Influence of Cover Size on Transfer Length of Prestressing Strand in Pretensioned Prestressed Ultra High Perfrmance Concrete Members (피복에 따른 초고성능 콘크리트 프리텐션부재의 응력전달길이 변화)

  • Park, Jong-Sup;Lee, Kyu-Wan;Kim, Byong-Suk;Joh, Chang-Bin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.95-96
    • /
    • 2009
  • In this paper, the transfer lengths in pretensioned prestressed Ultra High Performance Concrete members are verified to collect the basis data of UHPC increased in practical uses recently. The cover sizes and pretension forces were the main parameters of UHPC.

  • PDF

Evaluation on Structural Performance of Portable Prestressing Bed (이동식 긴장대의 구조특성에 관한 성능평가)

  • Kim, Jong-Suk;Yoon, Ki-Yong;Kim, Yong-Hyeog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.645-648
    • /
    • 2010
  • 본 연구는 이동식 긴장대의 실험결과와 유한요소해석프로그램(ABAQUS)을 사용한 해석결과를 비교, 분석하여 이동식 긴장대의 구조 성능을 평가한 것이다. 현재 사용되는 프리텐션방식의 PSC 거더는 공장에서 제작, 운반하여 현장에서 가설하는 방식이나 도로주행 여건에 의해 운반 가능한 부재의 크기가 제한됨에 따라 소규모 PSC 슬래브에만 프리텐션 방식이 적용되고 있다. 이에 본 연구에서는 현장에서 프리텐션 방식으로 PSC 거더를 제작할 수 있는 이동식 긴장대를 개발하고자 한다. 본 논문에서는 실험결과와 해석결과를 통하여 각 구성요소가 이동식 긴장대에 작용하는 긴장력에 저항하는 메카니즘을 파악하여 개발하고자 하는 이동식 긴장대의 구조적 특성을 파악하고자 하였다.

  • PDF