• Title/Summary/Keyword: 프리캐스트 교각

Search Result 37, Processing Time 0.025 seconds

An Analytical Study for Unbonded Precast Column under Seismic Loading (비부착텐던 프리캐스트 교각의 내진거동에 대한 해석적 연구)

  • Choi, Seung-Won;Kim, Ik-Hyun;Cho, Jae-Yoel;Lee, Do-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.109-112
    • /
    • 2008
  • It has better seismic performance and construction performance in precast column than in conventional RC column. In this research, seismic performances of precast column are analyzed by OpenSEES. Main variables of analysis are concrete strength, jacking ratio of tendon, amount of tendon and size of segment. As the amount of tendon and jacking ratio are increased, the flexural strength is also increased. And there is very little effect as it varies concrete strength and size of segment. But high initial jacking ratio leads to early yielding of tendon. And it is considered that a size of segment is related on construction problem. And also, strain in core concrete is less than ultimate strain. Consequently, it is considered that the amount of transverse steel will be reduced.

  • PDF

Nonlinear Finite Element Analysis of Prefabricated PSC Columns with Precast Footing (프리캐스트 기초부를 갖는 조립식 PSC 교각의 비선형 유한요소 해석)

  • Park, Young-Gi;Kim, Tae-Hoon;Cheon, Ju-Hyoun;Park, Se-Jin;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.177-178
    • /
    • 2009
  • This study is based on the precast concrete bridge which recently became important field of bridge construction. to develop the connecting technology of pier and footing, the purpose of this study is to verify applicability through the result of nonlinear analysis.

  • PDF

Study on the Seismic Behavior of Precast Concrete Segmental Bridge Piers with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 지진거동에 관한 연구)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Kim, Chul-Young;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.85-88
    • /
    • 2008
  • The purpose of this study was to investigate the seismic behavior of precast concrete segmental bridge piers with shear resistance connecting structure. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. The proposed numerical method for the seismic behavior of precast concrete segmental bridge piers with shear resistance connecting structure is verified by comparison with reliable experimental results.

  • PDF

Precast Concrete Copings for Precast Segmental PSC Bridge Columns : II. Experiments and Analyses (프리캐스트 세그먼트 PSC 교각의 조립식 코핑부 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.475-484
    • /
    • 2010
  • The purpose of this study is to investigate the inelastic behavior of precast concrete copings for precast segmental PSC bridge columns and to provide the details and reference data. Twelve one-fourth-scale precast concrete copings were tested under quasistatic monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast concrete copings for precast segmental PSC bridge columns and presents conclusions based on the experimental and analytical findings.

Precast Segmental PSC Bridge Columns with Precast Concrete Footings : II. Experiments and Analyses (조립식 기초부를 갖는 프리캐스트 세그먼트 PSC 교각 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.407-419
    • /
    • 2009
  • The purpose of this study is to investigate the seismic behavior of precast segmental PSC bridge columns with precast concrete footings and to provide the details and reference data. Six precast segmental PSC bridge columns were tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast segmental PSC bridge columns with precast concrete footings and presents conclusions based on the experimental and analytical findings.

Performance Assessment of Precast Concrete Segmental Bridge Columns with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.591-601
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast concrete segmental bridge columns with shear resistance connecting structure. The system can reduce work at a construction site and makes construction periods shorter. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. An bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly modified to predict the inelastic behaviors of segmental joints. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

Evaluation of Seismic Performance of Prefabricated Bridge Piers with a Circular Solid Section (중실원형단면 조립식 교각의 내진 성능 평가)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chung, Chul-Hun;Kim, Cheol-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.23-31
    • /
    • 2007
  • Fast bridge construction has been increasingly needed according to the changed construction environment. This paper deals with quasi-static tests on precast piers for bridge substructures. One of the most crucial aspect of the design of precast prestressed concrete bridge piers is the seismic performance. Seven precast pier elements were fabricated. The amount of prestressing bars, the prestressing force, and the location and number of the joint between segments were the main test parameters. Test results showed that the introduced axial prestress made the restoration of the deformation under small lateral displacement and minor damage. However, there was no effect of the prestress when the plastic hinge region was damaged severely due to large lateral displacement. Judging from the observed damage, the design of the joints in precast piers should be done for the first joint between the foundation and the pier segment. The amount of the necessary prestressing steel may be designed to satisfy the P-M diagram according to the service loads, not by having the same steel ratio as normal RC bridge piers. In order to satisfy the current required displacement ductility, it is necessary to have the same amount of the transverse reinforcements as RC piers. As the steel ratio increases, the energy absorption capacity increases. The number of joints showed a little influence on the energy absorption capacity.

Development of Precast Hollow Concrete Columns with Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브를 사용한 중공 프리캐스트 교각 개발)

  • Cho, Jae-Young;Lee, Young-Ho;Kim, Do-Hak;Park, Jong-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.215-225
    • /
    • 2011
  • In general, the precast columns can obtain its homogeneous quality as they are produced in a factory with a hollow concrete block type by using high strength concrete, so that they can generate the reduction of dead load. Such a method of precast hollow concrete columns is already implemented in USA and Japan and used for connecting between blocks which use PC tendons. However, it is inevitable to have uneconomical construction with excessive cost in early stage when PC tendons are used. This study aims to develop an economical precast column with high quality and constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. To achieve this goal, this study tested the performance of total 5 minimized models in the experiment with the variables such as hollowness, diameter of main reinforcement bar and cross-sectional size for the cross section of precast column by using grouting type splice sleeve which is a new type joint rebar. And it also verified the performance of column in the experiment for a large-sized model in order to overview its applicability by excluding large scale effect.