• 제목/요약/키워드: 프로그래밍 반도체 소자

검색결과 5건 처리시간 0.02초

탄소나노튜브 방향성 수축 전송 방법이 CNTFET 기반 회로 성능에 미치는 영향에 관한 연구 (A Study on the Effect of Carbon Nanotube Directional Shrinking Transfer Method for the Performance of CNTFET-based Circuit)

  • 조근호
    • 문화기술의 융합
    • /
    • 제4권3호
    • /
    • pp.287-291
    • /
    • 2018
  • 차세대 반도체 소자로 관심을 받고 있는 CNTFET은 소자의 소스와 드레인 사이에 CNT를 배치시켜, 기존 MOSFET보다 작은 전압으로 전자의 ballstic 혹은 near-ballastic 이동을 가능하게 만든 반도체 소자이다. CNTFET의 성능을 높이기 위해서는 많은 수의 CNT를 CNTFET 안에 높은 밀도로 배치해야 하기 때문에 CNT의 밀도를 증가시키기 위한 다양한 공정들이 개발되고 있다. 최근, 방향성 수축 전송 방법이 개발되어 CNTFET의 전류 밀도를 150uA/um까지 향상시켜줄 수 있음을 보이고 있어, CNTFET 기반 집적회로의 구현 가능성을 높이고 있다. 본 논문에서는, 방향성 수축 전송 방법으로 CNTFET 소자를 만들 경우, CNTFET 회로의 성능이 기존 MOSFET의 성능에 비해 얼마나 향상시킬 수 있는지 그 성능을 평가할 수 있는 방안을 논의하고자 한다.

저전압 플래시메모리를 위한 SONOS 비휘발성 반도체기억소자에 관한 연구 (A Study on SONOS Non-volatile Semiconductor Memory Devices for a Low Voltage Flash Memory)

  • 김병철;탁한호
    • 한국정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.269-275
    • /
    • 2003
  • 저전압 프로그래밍이 가능한 플래시메모리를 실현하기 위하여 0.35$\mu\textrm{m}$ CMOS 공정 기술을 이용하여 터널링산화막, 질화막 그리고 블로킹산화막의 두께가 각각 2.4nm, 4.0nm, 2.5nm인 SONOS 트랜지스터를 제작하였으며, SONOS 메모리 셀의 면적은 1.32$\mu$$m^2$이었다. 질화막의 두께를 스케일링한 결과, 10V의 동작 전압에서 소거상태로부터 프로그램상태로, 반대로 프로그램상태에서 소거상태로 스위칭 하는데 50ms의 시간이 필요하였으며, 최대 메모리윈도우는 1.76V이었다. 그리고 질화막의 두께를 스케일링함에도 불구하고 10년 후에도 0.5V의 메모리 윈도우를 유지하였으며, 105회 이상의 프로그램/소거 반복동작이 가능함을 확인하였다. 마지막으로 부유게이트 소자에서 심각하게 발생하고있는 과도소거현상이 SONOS 소자에서는 나타나지 않았다.

3층 구조 녹색 형광 OLED의 임피던스 특성 (Impedance Characteristics of 3 Layered Green Fluorescent OLED)

  • 공도훈;임지현;최성우;박윤수;이관형;주성후
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.140-140
    • /
    • 2016
  • 유기전계발광소자 (Organic Light Emitting Diode : OLED)는 보조광원이 필요 없고 천연색 표현이 가능하며, 낮은 소비 전력 및 저전압 구동 등의 장점으로 이상적인 디스플레이 구현이 가능하여 차세대 디스플레이로써 많은 이목을 끌고 있으나 제한된 수명과 안정성의 문제점을 안고 있다. 따라서 OLED의 열화 원인을 분석하고 수명을 연장하기 위한 체계적인 방법과 기술 개발이 중요하다. Impedance Spectroscopy는 이온, 반도체, 절연체 등의 벌크 또는 계면 영역의 전하 이동을 조사하는데 사용될 수 있어, OLED에서도 Impedance Spectroscopy를 이용하여 전하수송과 전자주입 메커니즘 등 폭넓은 전기적 정보를 얻을 수 있다. 본 연구에서는 Impedance Spectroscopy를 이용하여 경과시간에 따른 OLED의 임피던스 특성을 측정하여 열화 메커니즘을 분석하였다. 본 연구에서 OLED는 ITO / 2-TNATA (4,4,4-tris2-naphthylphenyl-aminotriphenylamine) / NPB (N,N'-bis-(1-naphyl)-N, N'-diphenyl-1,1'- biphenyl-4,4'-diamine) / Alq3 (tris(quinolin-8-olato) aluminum) / Liq / Al으로 구성된 녹색 형광 OLED를 제작하였다. OLED의 전계 발광 특성을 측정하기 위한 전원 인가장치로 Keithley 2400을 사용하여 전압과 전류를 인가하였고, 소자에서 발광된 휘도 및 발광 스펙트럼은 Photo Research사의 PR-650 Spectrascan을 사용하여 암실 환경에서 측정하였다. 임피던스 스펙트럼은 컴퓨터 제어 프로그래밍이 가능한 KEYSIGHT사의 E4990A를 사용하여 측정하였다. 임피던스 측정 전압은 0 V부터 2 V 간격으로 8 V까지, 주파수는 20 Hz에서 2 kHz의 범위로 설정하여 측정하였다. I-V-L과 임피던스 특성은 24 시간의 간격을 두고 실온에서 측정하였다. 그림은 경과시간에 따른 녹색 형광 OLED의 인가전압 2 V, 6 V의 Cole-Cole plot을 나타낸 것이다. 문턱전압 미만인 인가전압 2 V에서는 소자를 통하여 전류가 흐르지 않아 큰 반원 형태를 나타내었고, 시간이 경과함에 따라 소자 제작 직후엔 실수 임피던스의 최댓값이 $8982.6{\Omega}$에서 480 시간 경과 후엔 $9840{\Omega}$으로 약간 증가하였다. 문턱전압 이상인 인가전압 6 V에서는 소자 제작 직후 실수 임피던스의 최댓값이 $108.2{\Omega}$으로 작은 반원 형태를 나타내나 시간이 경과함에 따라 방사형으로 증가하는 것을 확인 할 수 있었고, 672 시간 경과 후엔 실수 임피던스의 최댓값이 $9126.9{\Omega}$으로 문턱 전압 미만 일 때와 유사한 결과를 나타내었다. 이러한 임피던스의 증가 현상은 시간이 경과함에 따라 OLED의 열화에 의한 것으로 판단된다.

  • PDF

항공 시스템용 전자 하드웨어 개발을 위한 미국 및 유럽의 가이드라인 : RTCA DO-254와 ECSS-Q-ST-60-02C의 비교 분석 연구 (A study of U.S. and European electronic hardware guidelines for aviation system : RTCA DO-254 and ECSS-Q-ST-60-02C)

  • 김성훈;김현우;채희문;김기두
    • 항공우주시스템공학회지
    • /
    • 제16권4호
    • /
    • pp.10-16
    • /
    • 2022
  • 항공 시스템은 소프트웨어·하드웨어 복합 형태로 개발되므로, 관련 가이드라인의 적용 필요성이 증가하고 있다. 그러나 현재 국내의 항공 시스템에 전자 하드웨어와 관련한 국제 개발 가이드라인을 체계적으로 적용한 경우는 흔치 않다. 따라서, 본 연구에서는 초정밀 GPS 보정시스템(SBAS; Satellite Based Augmentation System) 개발·구축의 KASS(Korea Augmentation Satellite System) 성능적합증명 수행을 사례로 항공(우주)용 전자 하드웨어 개발 가이드라인인 DO-254와 ECSS-Q-ST-60-02C의 비교 분석 연구를 목적으로 한다.

BioFET 시뮬레이션을 위한 CUDA 기반 병렬 Bi-CG 행렬 해법 (CUDA-based Parallel Bi-Conjugate Gradient Matrix Solver for BioFET Simulation)

  • 박태정;우준명;김창헌
    • 전자공학회논문지CI
    • /
    • 제48권1호
    • /
    • pp.90-100
    • /
    • 2011
  • 본 연구에서는 연산 부하가 매우 큰 Bio-FET 시뮬레이션을 위해 낮은 비용으로 대규모 병렬처리 환경 구축이 가능한 최신 그래픽 프로세서(GPU)를 이용해서 선형 방정식 해법을 수행하기 위한 병렬 Bi-CG(Bi-Conjugate Gradient) 방식을 제안한다. 제안하는 병렬 방식에서는 반도체 소자 시뮬레이션, 전산유체역학(CFD), 열전달 시뮬레이션 등을 포함한 다양한 분야에서 많은 연산량이 집중되어 전체 시뮬레이션에 필요한 시간을 증가시키는 포아송(Poisson) 방정식의 해를 병렬 방식으로 구한다. 그 결과, 이 논문의 테스트에서 사용된 FDM 3차원 문제 공간에서 단일 CPU 대비 연산 속도가 최대 30 배 이상 증가했다. 실제 구현은 NVIDIA의 태슬라 아키텍처(Tesla Architecture) 기반 GPU에서 범용 목적으로 병렬 프로그래밍이 가능한 NVIDIA사의 CUDA(Compute Unified Device Architecture) 환경에서 수행되었으며 기존 연구가 주로 32 비트 정밀도(single floating point) 실수 범위에서 수행된 것과는 달리 본 연구는 64 비트 정밀도(double floating point) 실수 범위로 수행되어 Bi-CG 해법의 수렴성을 개선했다. 특히, CUDA는 비교적 코딩이 쉬운 반면, 최적화가 어려운 특성이 있어 본 논문에서는 제안하는 Bi-CG 해법에서의 최적화 방향도 논의한다.