• Title/Summary/Keyword: 프레팅 손상

Search Result 25, Processing Time 0.034 seconds

Comparative study on fretting wear of aerospace, biomedical, and nuclear components (항공, 바이오, 원자력 부품의 프레팅 마모 현상 비교 연구)

  • Jun, Tea-Sung;Kim, Kyungmok
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.16-22
    • /
    • 2017
  • This paper investigates fretting wear damage in aerospace, biomedical, and nuclear components. Experimental parameters are identified that affect fretting wear damage. The parameters observed in industries are directly compared. The magnitudes of frequency, relative displacement, and normal force are found to differ depending on the contacting components where fretting wear occurs. In addition, recent solutions to minimize fretting wear damage are reviewed. The solutions include depositing of a low-friction coating, surface treatment, selection of substrate material, and optimal design of contact geometries. This comparative study suggests useful methods and solutions for analyzing fretting wear damage and for designing tribo-components.

Comparison and Estimation of Fretting Fatigue Damage Parameters for Aluminum Alloy A7075-T6 (A7075-T6 알루미늄 합금의 프레팅 피로 손상 파라미터 비교 평가)

  • Hwang, Dong-Hyeon;Cho, Sung-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1229-1235
    • /
    • 2011
  • Fatigue tests were conducted on the aluminum alloy, A7075-T6 to determine the most reliable fretting fatigue damage parameter. Specimens with grooves were used, so that either fretting fatigue crack at the pad/specimen interface or plain fatigue crack at the groove could be nucleated, depending on the pad pressure. Both the crack nucleation location and initial crack orientation were examined using optical microscopy, and the results were used to assess the reliability of the various fretting fatigue damage parameters that have been most commonly used in the literature. Finite element analysis was employed to obtain the stress and strain data of the specimen, which were needed to estimate the parameter values and the orientation of the critical plane. It was revealed that both the Fatemi.Socie and McDiarmid parameters, which assume shear-mode fatigue cracking, are the most reliable.

Prediction of Fretting Fatigue Life for Lap Joint Structures of Aircraft (항공기 겹침이음 조립구조의 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Joo, Seon-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.642-652
    • /
    • 2009
  • Most of lap jointed aircraft structures encounter the fretting damages, which provoke fretting cracks prematurely and lead to significant reduction of fatigue life. In the case of ageing aircrafts especially, this fretting fatigue problem is a fatal threat for the safety and airworthiness. Recently, as the service life extension program(SLEP) of ageing aircrafts has become a hot issue, the prediction of fretting fatigue life is also indispensable. On these backgrounds, a series of experimental tests of fretting fatigue on bolted lap joint specimens, were performed. And the fretting crack initiation and propagation life of each specimen were evaluated using existing and newly proposed prediction models with the fretting parameters obtained from the FEA results for elasto-plastic contact stress analyses. The validations of prediction models were also discussed, comparing the prediction results with experimental test ones.

A Study on Damage Tolerance Assessment for the Butt Lap Joint Structure with the Effects of Fretting Fatigue Cracks (프레팅 피로균열 영향을 고려한 항공기 맞대기중첩연결 구조 손상허용성 연구)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • The butt lap joint structures which are usually designed by the concept of slow crack growth damage tolerance, show frequently the behaviors of multiple site fatigue crack growth around the fastener hole edges due to the fretting between the two jointed parts. In this paper, experimental tests of fatigue crack growth have been performed of a bolted butt lap joint structure having an initial corner crack at the fastener hole edge, with different fretting conditions under a flight load spectrum. The obtained test results were reviewed to investigate the effects of fretting fatigue cracks on the damage tolerance crack growth life. Computations of corner crack growth were also carried out using an existed model to compare with test results.

The Effect of Fretting Wear on Fatigue Crack Initiation Site of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로균열 발생 위치에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.546-553
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile by fretting wear on the contact stress distribution and fatigue crack initiation site of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact surface profiles of shaft. The evolutions of contact stress as wearing of contact surface were analyzed by finite element analysis and fatigue crack nucleation sites were evaluated by fretting fatigue damage parameter (FFDP) md multiaxial fatigue criteria. It is found that the stress concentration of a contact edge in press-fitted sha손 decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside due to fretting wear as increasing of fatigue cycles. Thus the transition of crack nucleation position in press-fitted shaft is mainly caused by stress change of a contact edge due to the evolution of contact surface profile by fretting wear. Therefore, it is suggested that the nucleation of multiple cracks on fretted surface of press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

Prediction of Fretting Fatigue Life on 2024-T351 Al-alloy (2024-T351 알루미늄 합금판 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.601-611
    • /
    • 2007
  • Most of mechanically jointed aircraft structures are always encountered the fretting damages on the contact surfaces between two jointed structural members or at the edges of fastener holes. The partial slip and contact stresses associated with fretting contact can lead to severe reduction in service lifetime of aircraft structures. Thus a critical need exists for predicting fretting crack initiation in mechanically jointed aircraft structures, which requires characterizing both the near-surface mechanics and intimate relationship with fretting parameters. In this point of view, a series of fretting fatigue specimen tests for 2024-T351 Al-alloy, have been conducted to validate a mechanics-based model for predicting fretting fatigue life. And included in this investigaion were elasto-plastic contact stress analyses using commercial FEA code to quantify the stress and strain fields in subsurface to evaluate the fretting fatigue crack initiation.

Development of A Methodology for In-Reactor Fuel Rod Supporting Condition Prediction (노내 연료봉 지지조건 예측 방법론 개발)

  • Kim, K. T.;Kim, H. K.;K. H. Yoon
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 1996
  • The in-reactor fuel rod support conditions against the fretting wear-induced damage can be evaluated by residual spacer grid spring deflection or rod-to-grid gap. In order to evaluate the impact of fuel design parameters on the fretting wear-induced damage, a simulation methodology of the in-reactor fuel rod supporting conditions as a function of burnup has been developed and implemented in the GRIDFORCE program. The simulation methodology takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key fuel design parameters affecting the in-reactor fuel rod supporting conditions. Based on the parametric studies on these key parameters, it is found that the initial spring deflection, the spring force relaxation rate and cladding creepdown rate are in the order of the impact on the in-reactor fuel rod supporting conditions. Application of this simulation methodology to the fretting wear-induced failure experienced in a commercial plant indicates that this methodology can be utilized as an effective tool in evaluating the capability of newly developed cladding materials and/or new spacer grid designs against the fretting wear-induced damage.

  • PDF