DOI QR코드

DOI QR Code

Comparative study on fretting wear of aerospace, biomedical, and nuclear components

항공, 바이오, 원자력 부품의 프레팅 마모 현상 비교 연구

  • Jun, Tea-Sung (Department of Mechanical Engineering, Incheon National University) ;
  • Kim, Kyungmok (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 전태성 (인천대학교 기계공학과) ;
  • 김경목 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2017.02.20
  • Accepted : 2017.03.30
  • Published : 2017.04.30

Abstract

This paper investigates fretting wear damage in aerospace, biomedical, and nuclear components. Experimental parameters are identified that affect fretting wear damage. The parameters observed in industries are directly compared. The magnitudes of frequency, relative displacement, and normal force are found to differ depending on the contacting components where fretting wear occurs. In addition, recent solutions to minimize fretting wear damage are reviewed. The solutions include depositing of a low-friction coating, surface treatment, selection of substrate material, and optimal design of contact geometries. This comparative study suggests useful methods and solutions for analyzing fretting wear damage and for designing tribo-components.

본 논문에서는 항공, 바이오 및 원자력 부품들에서 발생하는 프레팅 마모 현상이 비교 연구되었다. 프레팅 마모 손상에 영향을 미치는 실험적 인자들을 확인하였으며 각 부품에서 관찰된 실험 인자들의 크기들을 직접 비교하였다. 초당 진동수, 상대적 변위, 그리고 수직하중의 크기는 프레팅 마모가 발생하는 부품에 따라 다양했다. 프레팅 마모 손상을 최소화시키는 최근 해결책들이 조사되었으며 저마찰 코팅 적층, 표면 처리, 기저 재료 및 접촉 형상 최적 설계 등이 해결책으로 소개되었다. 본 연구는 프레팅 마모 손상을 분석하고 마찰 부품을 설계하는데 유용한 방법과 해결책을 제공한다.

Keywords

References

  1. D. Hills and D. Nowell, Mechanics of fretting fatigue, 1st ed., Kluwer Academic Publishers, Dordrecht, 1994.
  2. K. Kim and A. M. Korsunsky, "Exponential evolution law of fretting wear damage in low friction coatings for aerospace components," Surface and Coatings Technology, vol. 202,pp. 5838-5846, 2008. https://doi.org/10.1016/j.surfcoat.2008.06.051
  3. K. Kim, J. Geringer, J. Pellier and D. D. Macdonald, "Fretting corrosion damage of total hip prosthesis: Friction coefficient and damage rate constant approach," Tribology International, vol. 60, pp. 10-18, 2013. https://doi.org/10.1016/j.triboint.2012.10.008
  4. K. Kim, The investigation of fretting wear and fretting fatigue of coated systems, D.Phil. thesis, Oxford University, 2005.
  5. K. T. Kim, "A study on the grid-to-rod fretting wear-induced fuel failure observed in the 16$\times$16KOFA fuel," Nuclear Engineering and Design, vol. 240, pp. 756-762, 2010. https://doi.org/10.1016/j.nucengdes.2009.12.014
  6. J. Pellier, J. Geringer and B. Forest, "Fretting-corrosion between 316L SS and PMMA: influence of ionic strength, protein and electrochemical conditions on material wear. Application to orthopedic implants," Wear, vol. 271, no. 9-10, pp. 1563-1571, 2011. https://doi.org/10.1016/j.wear.2011.01.082
  7. U. Bryggman and S. Soderberg, "Contact conditions and surface degradation mechanisms in low amplitude fretting," Wear, vol. 125, pp. 39-52, 1988. https://doi.org/10.1016/0043-1648(88)90192-5
  8. S. Fouvry, P. Kapsa and L. Vincent, "Analysis of sliding behaviour for fretting loadings: determination of transition criteria," Wear, vol. 185, pp. 35-46, 1995. https://doi.org/10.1016/0043-1648(94)06582-9
  9. H. J. Kim, S. N. Kim, S. H. Kim and D. M. Kim, "Characteristics of rubber friction and wear," Journal of Aerospace System Engineering, vol. 4, no. 4, pp.1-10, 2010.
  10. J. Kim, J. Yoon, J. Lee and H. Oh, "Performance Analysis of Reaction Wheel according to Bearing Preload and Oil Quantity," Journal of Aerospace system engineering, vol. 10, no. 1, pp. 35-42, 2016. https://doi.org/10.20910/JASE.2016.10.1.35
  11. H.J. Kwon and K. Kim, "Development of a testing machine for fretting damage of aerospace components," Journal of The Korean Society for Aviation and Aeronautics, vol. 23, no. 1, pp. 62-66, 2015. https://doi.org/10.12985/ksaa.2015.23.1.062
  12. K. Kim and A. M. Korsunsky, "Dissipated energy and fretting damage in CoCrAlY-MoS2 coatings," Tribology International, vol. 43, pp. 676-684, 2010. https://doi.org/10.1016/j.triboint.2009.10.007
  13. S. Fouvry, P. Kapsa and L. Vincent, "Quantification of fretting damage," Wear, vol. 200, pp. 186-205, 1996. https://doi.org/10.1016/S0043-1648(96)07306-1
  14. M. Varenberg, I. Etsion and G. Halperin, "Slip index: a new unified approach to fretting," Tribology Letters, vol. 17, pp. 569-573, 2004. https://doi.org/10.1023/B:TRIL.0000044506.98760.f9
  15. K. L. Johnson, K. Kendall, A. D. Roberts, "Surface energy and the contact of elastic solids," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 324, pp. 301-313, 1971. https://doi.org/10.1098/rspa.1971.0141
  16. B. V. Derjaguin, V. M. Muller, YU. P. Toporov, "Effect of contact deformations on the adhesion of particles," Journal of Colloid and Interface Science, vol. 53, pp. 314-326, 1975. https://doi.org/10.1016/0021-9797(75)90018-1
  17. A. M. Korsunsky, A.R. Torosyan and K. Kim, "Development and characterization of low friction coatings for protection against fretting wear in aerospace components," Thin Solid Films, vol. 516, pp. 5690-5699, 2008. https://doi.org/10.1016/j.tsf.2007.07.056
  18. J. H. Sung, T. H. Kim, S. S. Kim, "Fretting damage of TiN coated zircaloy-4 tube," Wear 250, pp. 658-664, 2001. https://doi.org/10.1016/S0043-1648(01)00674-3
  19. W. L. Jaffe, D. F. Scott, "Current concepts reviewTotal hip arthroplasty with hydroxyapatite-coated prostheses," The Journal of Bone and Joint Surgery, vol. 78, pp. 1918-1934, 1996. https://doi.org/10.2106/00004623-199612000-00018
  20. K. Kim and A. M. Korsunsky, "Fretting damage of Ni-MoS2 coatings: friction coefficient and accumulated dissipated energy evolutions," Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 224, pp. 1173-1180, 2010. https://doi.org/10.1243/13506501JET807