• Title/Summary/Keyword: 프레팅피로

Search Result 39, Processing Time 0.141 seconds

Prediction of Fretting Fatigue Life for Lap Joint Structures of Aircraft (항공기 겹침이음 조립구조의 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Joo, Seon-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.642-652
    • /
    • 2009
  • Most of lap jointed aircraft structures encounter the fretting damages, which provoke fretting cracks prematurely and lead to significant reduction of fatigue life. In the case of ageing aircrafts especially, this fretting fatigue problem is a fatal threat for the safety and airworthiness. Recently, as the service life extension program(SLEP) of ageing aircrafts has become a hot issue, the prediction of fretting fatigue life is also indispensable. On these backgrounds, a series of experimental tests of fretting fatigue on bolted lap joint specimens, were performed. And the fretting crack initiation and propagation life of each specimen were evaluated using existing and newly proposed prediction models with the fretting parameters obtained from the FEA results for elasto-plastic contact stress analyses. The validations of prediction models were also discussed, comparing the prediction results with experimental test ones.

Prediction of Fretting Fatigue Life on 2024-T351 Al-alloy (2024-T351 알루미늄 합금판 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.601-611
    • /
    • 2007
  • Most of mechanically jointed aircraft structures are always encountered the fretting damages on the contact surfaces between two jointed structural members or at the edges of fastener holes. The partial slip and contact stresses associated with fretting contact can lead to severe reduction in service lifetime of aircraft structures. Thus a critical need exists for predicting fretting crack initiation in mechanically jointed aircraft structures, which requires characterizing both the near-surface mechanics and intimate relationship with fretting parameters. In this point of view, a series of fretting fatigue specimen tests for 2024-T351 Al-alloy, have been conducted to validate a mechanics-based model for predicting fretting fatigue life. And included in this investigaion were elasto-plastic contact stress analyses using commercial FEA code to quantify the stress and strain fields in subsurface to evaluate the fretting fatigue crack initiation.

The Effect of Fretting Wear on Fatigue Crack Initiation Site of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로균열 발생 위치에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.546-553
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile by fretting wear on the contact stress distribution and fatigue crack initiation site of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact surface profiles of shaft. The evolutions of contact stress as wearing of contact surface were analyzed by finite element analysis and fatigue crack nucleation sites were evaluated by fretting fatigue damage parameter (FFDP) md multiaxial fatigue criteria. It is found that the stress concentration of a contact edge in press-fitted sha손 decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside due to fretting wear as increasing of fatigue cycles. Thus the transition of crack nucleation position in press-fitted shaft is mainly caused by stress change of a contact edge due to the evolution of contact surface profile by fretting wear. Therefore, it is suggested that the nucleation of multiple cracks on fretted surface of press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

Evaluation of Fretting Fatigue Behavior for Inconel Alloy at 320℃ (320℃에서의 인코넬 합금의 프레팅 피로 거동 평가에 관한 연구)

  • Kwon, Jae-Do;Jeung, Han-Kyu;Chung, Il-Sup;Park, Dae-Kyu;Yoon, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.951-956
    • /
    • 2011
  • Inconel alloys are generally used as steam generator tubes in nuclear power plants. These alloys are highnickel chromium alloys that exhibit excellent resistance to aqueous corrosion. In this paper, the effects of elevated temperatures such as an operating temperature of $320^{\circ}C$ on the fretting fatigue behavior of inconel 600 and 690. We observed that the plain and fretting fatigue limits at $320^{\circ}C$ were slightly lower than those at room temperature. The frictional forces varied depending on the number of load cycles. After each test, we studied the fretting fatigue mechanisms via SEM observations. These results can be used for structural integrity evaluations at elevated temperatures and for studying fretting damage in steam generator systems.

Comparison and Estimation of Fretting Fatigue Damage Parameters for Aluminum Alloy A7075-T6 (A7075-T6 알루미늄 합금의 프레팅 피로 손상 파라미터 비교 평가)

  • Hwang, Dong-Hyeon;Cho, Sung-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1229-1235
    • /
    • 2011
  • Fatigue tests were conducted on the aluminum alloy, A7075-T6 to determine the most reliable fretting fatigue damage parameter. Specimens with grooves were used, so that either fretting fatigue crack at the pad/specimen interface or plain fatigue crack at the groove could be nucleated, depending on the pad pressure. Both the crack nucleation location and initial crack orientation were examined using optical microscopy, and the results were used to assess the reliability of the various fretting fatigue damage parameters that have been most commonly used in the literature. Finite element analysis was employed to obtain the stress and strain data of the specimen, which were needed to estimate the parameter values and the orientation of the critical plane. It was revealed that both the Fatemi.Socie and McDiarmid parameters, which assume shear-mode fatigue cracking, are the most reliable.

A Study on Damage Tolerance Assessment for the Butt Lap Joint Structure with the Effects of Fretting Fatigue Cracks (프레팅 피로균열 영향을 고려한 항공기 맞대기중첩연결 구조 손상허용성 연구)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • The butt lap joint structures which are usually designed by the concept of slow crack growth damage tolerance, show frequently the behaviors of multiple site fatigue crack growth around the fastener hole edges due to the fretting between the two jointed parts. In this paper, experimental tests of fatigue crack growth have been performed of a bolted butt lap joint structure having an initial corner crack at the fastener hole edge, with different fretting conditions under a flight load spectrum. The obtained test results were reviewed to investigate the effects of fretting fatigue cracks on the damage tolerance crack growth life. Computations of corner crack growth were also carried out using an existed model to compare with test results.

Evaluation of Fatigue Crack Initiation Life in a Press-Fitted Shaft Considering the Fretting Wear (프레팅 마모를 고려한 압입축의 피로균열 발생수명 예측)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;You, Won-Hee;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1091-1098
    • /
    • 2009
  • In this paper, the procedure to estimate fatigue crack initiation life has been established by considering fretting wear and multiaxial stress states on the contact surface of press-fitted shafts. And a method to calculate the local friction coefficient during the running-in period of fretting wear process has been proposed. The predicted result of worn surface profile in the press-fitted shaft with non-linear local friction coefficient can avoid excessive wear depth estimation compared with that for the case of constant local friction coefficient. Furthermore, the predicted fatigue crack initiation lives based on Smith-Watson-Topper model considering the fretting wear are in good agreement with the experimental data. Consequently, the present method is valid not only for predicting worn surface profile, but also for assessing fatigue crack initiation lives considering the fretting wear during the running-in period in press fits.

Finite Element Analysis of Stage II Crack Growth and Branching in Fretting Fatigue (프레팅 피로에서 2단계 균열성장과 분지 유한요소해석)

  • Jung, Hyun Su;Cho, Sung-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1137-1143
    • /
    • 2015
  • The stage II fretting fatigue crack growth and branching, i.e., the process of fretting fatigue crack growth starting in an inclined direction and then changing to the normal direction, is analyzed using the finite element method. The fretting fatigue experiment data of A7075-T6 are used in the analysis. The applicability of maximum tangential stress intensity factor, maximum tangential stress intensity factor range, and maximum crack growth rate as the crack growth direction criteria is examined. It is revealed that the stage II crack growth before and after the branching cannot be simulated with a single criterion, but can be done when different criteria are applied to the two stages of crack growth. Moreover, a method to determine the crack length at which the branching occurs is proposed.

Fretting Fatigue Behavior of High Strength Aluminum Alloys (고강도 알루미늄 합금의 프레팅 피로거동)

  • Choi, Sung-Jong;Lee, Hak-Sun;Lee, Cheol-Jae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.