• Title/Summary/Keyword: 프레임 응력

Search Result 153, Processing Time 0.024 seconds

Analysis of Residual Stresses Induced during Adhesion Process of Chip and Leadframe (칩과 리드페임의 접착과정에서 발생하는 잔류 응력 해석)

  • 이상순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.97-103
    • /
    • 2000
  • This paper deals with residual stresses induced at the viscoelastic adhesive layer between the semiconductor chip and the leadframe during adhesion process. The adhesive layer has been assumed to be“thermorheologically simple”. The time-domain boundary element method(BEM) has been employed to investigate the behavior of interface stresses. Numerical results show that very large stress gradients are present at the interface corner and such singularity might lead to local yielding or edge delamination.

  • PDF

The Effect of Fretting Wear on Fatigue Crack Initiation Site of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로균열 발생 위치에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.546-553
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile by fretting wear on the contact stress distribution and fatigue crack initiation site of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact surface profiles of shaft. The evolutions of contact stress as wearing of contact surface were analyzed by finite element analysis and fatigue crack nucleation sites were evaluated by fretting fatigue damage parameter (FFDP) md multiaxial fatigue criteria. It is found that the stress concentration of a contact edge in press-fitted sha손 decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside due to fretting wear as increasing of fatigue cycles. Thus the transition of crack nucleation position in press-fitted shaft is mainly caused by stress change of a contact edge due to the evolution of contact surface profile by fretting wear. Therefore, it is suggested that the nucleation of multiple cracks on fretted surface of press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

Disk harrow structure analysis of non-motorized composite implement of tractor (무동력 트랙터 복합작업기의 디스크 구조해석)

  • Lee, Choong Ho;Jang, Ji Un;Lee, In Beom;Kim, Hyun Gyung
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.85-85
    • /
    • 2017
  • 무동력 복합작업기는 치즐쟁기와 디스크의 배열에 따라 작업성능이 좌우된다. 프레임과 디스크, 치즐쟁기에 가해지는 기본적인 힘의 상태를 확인하기 위한 정적 구조해석을 수행하였다. 복합작업기는 디스크는 $18^{\circ}$가 경사진 형태로 전면9개 후면9로 총 18개, 치즐쟁기(Chiselplow)는 4개로, 디스크는 모두 18개이다. 정적인 상태에서 끄는 견인력은 100마력, 150마력, 200마력으로 하였으며 Inventor의 해석 시스템은 힘을 N으로 사용하기 때문에 각 마력에 부가되는 하중을 N으로 치환하여 사용하였다. 구속조건은 frame과, disc, chisel plow에 맞닿는 면을 구속하고, 힘의 방향은 프레임과 트랙터의 연결면, 디스크 날과 땅의 접촉면에 적용했다. front /rear 디스크는 이론상으로는 양 디스크가 쌍으로 마주하고 있어서 스캔데이타를 중심으로 모델링한 결과를 바탕으로, 전후면 디스크해로우의 해석을 수행하였다. 조립 또는 사용상의 문제점이나 자연적인 유격에 의해 어느 정도 대칭이 되지 않을수 있으나 그 정도에 따라 진동과 내구성에 문제가 될 수도 있기에 한쌍에 대해 모델링을 통한 해석을 수행하였다. 해석결과에 따르면 디스크에 작용하는 폰미세스 응력은 극한강도에 미치지 않은 것으로 나타났으며 Frame의 최대 폰 미세스 응력을 제외하면, 대부분의 응력은 항복강도에 현저히 미치지 못하는 수치이고, 프레임의 경우는 150마력, 200마력으로 힘을 가할 때 항복강도는 넘는 수치이지만 극한인장강도에는 미치지 못하는 수치인 것을 알 수 있었다. 100마력에 폰 미세스 응력의 최대값은 0.161918 MPa이고 프레임 강의 항복강도인 207MPa와 디스크의 항복강도인 250MPa에 못 미치는 수치이다. 150마력과 200마력의 힘으로 회전할 때의 폰 미세스 응력의 최대값은 0.286425MPa과 0.381921 MPa로 항복강도인 250MPa에 크게 못 미치는 수치이다. 그 이유는 디스크해로우 방식의 복합작업기는 견인저항력이 작게 설계되고 작업속도를 개선하기 위한 목적으로 사용되기 때문으로 사료된다. 벤치마킹 기대의 Rear 디스크도 마찬가지로 각도는 $18^{\circ}$이며, 동일한 구속조건을 적용하여 시뮬레이션을 수행하였으며 해석결과는 모두 항복강도 이내로 예측 되었다. 디스크에 최대로 응력이 미치는 부분은 디스크와 프레임이 연결되는 허브 부분이다. 각도가 커짐에 따라 응력이 증가하므로 이를 감안한 설계인자 도출이 가능하다. 마력과 각도가 증가함에 따라 디스크 해로우에 작용하는 폰미세스 응력과, 접촉압력이 증가하므로 이에 대한 검토와 동적하중인 로드프로파일을 적용한 해석을 수행하여 내구수명 특성에 대한 연구를 수행할 계획이다.

  • PDF

Structural Analysis of the Dual Thickness Laser Welded Frame (이종두께 레이저 용접 프레임의 구조해석)

  • 이영신;윤충섭;오재문
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.165-175
    • /
    • 1997
  • In this paper, the stress, buckling and vibration analyses have been performed for several case with the spot weld stiffened rear side frame, the unstiffened rear side frame and the dual thickness laser weld rear side frame. For stress and vibration analyses, the clamped boundary condition with spring supports are used. But for the buckling analyses, the both ends simply supported boundary conditions are used. For the nummerical analyses, ANSYS 5.0 code is adopted. Maximum stress of the spot weld stiffened rear side frame occurs in the main frame and is 80.9 MPa. Maximum strain is 501 .mu.. The maximum stress of the dual thickness laser weld rear side frame of 1.8mm thickness structure is equal with the stress of spot weld stiffened frame. The weight of dual thickness laser weld frame can be reduced about 17.2%. For the stiffened spot weld rear side frame with both ends simply supported boundary conditon, the bucking load is 52.54 kN. When the thickness of the dual thickness laser weld rear side frame become 1.9mm thickness structure, the buckling load of the stiffenerd rear side frame is equal to that of dual thickness laser weld frame. The reduction of the structure weight is about 5%. The fundamental natural frequency of the stiffened spot weld rear side frame for bending mode is 163.6 Hz and that of the dual thickness laser weld rear side frame is 179.8 Hz.

  • PDF

The Application of Electropolishing for Removing Burrs and Residual Stress of Stamping Leadframe (스탬핑 리드프레임의 버와 잔류응력 제거를 위한 전해연마의 적용)

  • 신영의;김헌희;김경섭;코조후지모토;김종민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.19-24
    • /
    • 2001
  • The lead frame, which is principal material used in semiconductor packaging, is required to be microscopic in leads and pitches to cope with miniaturization, thin film, large scale integrated. In addition, it is indispensable to eliminate residual stress and burrs occurring at manufacturing lead frames This thesis applied electrolytic abrasion in order to remove burrs and residual stress created during the stamp process. Electrolytic abrasion removed the burrs on the surface of lead frame. Removal of residual stress highly depends on the types of electrolyte solution. In case of perchloric system, electrolytic abrasion removed 23% of residual stress. Through removal of burrs and reducing residual stress, the reliability of lead frame was substantially improved.

  • PDF

Impact Analysis of Racing Car Using Space Frame (스페이스 프레임을 사용한 경주용 차량의 충돌해석)

  • Cho, Jae-Ung;Bang, Seung-Ok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.614-617
    • /
    • 2010
  • 본 논문에서는 충돌하중 하에서 스페이스 프레임을 사용하는 경주용 차량의 프레임에 작용하는 응력을 분석한다. 충돌 시 운전자의 안전을 확보하고 변형을 최소한으로 줄이며, 최적화 설계를 통하여 중량을 감소시키고 취약부분을 파악한다. 탄소강의 물성치를 바탕으로 트러스 구조로 설계된 차량 프레임의 유한요소모델을 만들고, ANSYS 프로그램을 사용하여 정면, 측면, 후면 방향의 충돌로 인하여 프레임에 작용하는 응력을 해석한다. 정면 및 후면충돌에서는 운전석에 가해지는 영향이 적지만, 측면충돌에서는 영향을 많이 받아 가장 취약한 부분이다. 이러한 취약부분의 보강을 통하여 프레임의 안전성 설계를 증진시키고 시뮬레이션 해석의 결과를 실제 프레임 제작에 활용한다.

  • PDF

Study on Torsion due to Automotive Body Type at Track Driving (궤적주행 시 차체 종류에 따른 비틀림에 관한 연구)

  • Choi, Youn-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Because there is no suspension and differential devices at cart body, the deformation of the frame happened during kart driving affects the driving performance caused by the elastic deformation and the fatigue life of kart frame resulted from the permanent deformation. The dynamic behavior of kart caused by the torsional deformation during circular driving is the important factor of these two kinds of deformations. In order to analyze the dynamic behavior of kart at this curved section, GPS is used to trace the track of kart and the torsional stress at kart-frame has been measured with real time. The mechanical properties of kart-frames for leisure and racing are investigated through material property analysis and tensile test. Torsional stress concentration and frame distortion are investigated through stress analysis on frame on the basis of study result. The real karts for leisure and racing kart are also tested in each driving condition by using the driving analysis equipment. The driving behavior of kart at the curved section are investigated through this test. As the phenomenon of load movement due to centrifugal force at car is happened during circular driving, the torsional stress occurs at cart steel frame.

Prediction of Fretting Fatigue Life on 2024-T351 Al-alloy (2024-T351 알루미늄 합금판 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.601-611
    • /
    • 2007
  • Most of mechanically jointed aircraft structures are always encountered the fretting damages on the contact surfaces between two jointed structural members or at the edges of fastener holes. The partial slip and contact stresses associated with fretting contact can lead to severe reduction in service lifetime of aircraft structures. Thus a critical need exists for predicting fretting crack initiation in mechanically jointed aircraft structures, which requires characterizing both the near-surface mechanics and intimate relationship with fretting parameters. In this point of view, a series of fretting fatigue specimen tests for 2024-T351 Al-alloy, have been conducted to validate a mechanics-based model for predicting fretting fatigue life. And included in this investigaion were elasto-plastic contact stress analyses using commercial FEA code to quantify the stress and strain fields in subsurface to evaluate the fretting fatigue crack initiation.

Measurement and Analysis of Bed Shear Stresses in Compound Open Channels using the Preston Tube (프레스톤튜브를 이용한 복단면 하도의 하상전단응력 측정 및 분석)

  • Lee, Du Han;Kim, Myounghwan;Kim, Won;Seo, Il Won
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.207-215
    • /
    • 2017
  • Hydraulic issues such as flow resistance, side wall correction, sediment, erosion and deposition, and channel design have close relation with distribution of bed shear stresses but the measurement of the distribution of bed shear stresses is not easy. In this study the Preston tube which makes possible relatively simple measurement of bed shear stresses is used to analyze the characteristics of bed shear distribution in compound open channels with different depth ratio. The Preston tubes are made and calibrated to develop the calibration formula and then they are applied to measure bed shear stress distribution in 5 cases depth ratio condition of compound channels. The results are compared with former experiment data, and characteristics of bed shear stress distributions are studied with different channel scales and Reynolds numbers. Although bed shear distributions with depth ratio show overall agreement with former studies, some differences are verified in bed shear variation, formation of inflection point in main channel, and distribution near floodplain junction which are due to high Reynolds number. Through the study applicability of the Preston tubes are also verified and characteristics of bed shear distribution in compound channels are suggested with Reynolds number and depth ratio.

A Study on Torsional Characteristics of the Car Body Types at Cornering Motion (선회주행 시 차체의 비틀림 특성에 관한 연구)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.739-744
    • /
    • 2017
  • Elastic deformation and fatigue damage can cause the permanent deformation of a kart's frame during turning, affecting the kart's driving performance. A kart's frame does not contain any suspension or differential devices and, therefore, the dynamic behavior caused by torsional deformation when driving along a curve can strongly affect these two kinds of deformations. To analyze the dynamic behavior of a kart along a curved section, the GPS trajectory of the kart is obtained and the torsional stress acting on the kart-frame is measured in real time. The mechanical properties of leisure and racing karts are investigated by analyzing their material properties and conducting a tensile test. The torsional stress concentration and frame distortion are investigated through a stress analysis of the frame on the basis of the obtained results. Leisure and racing karts are tested in each driving condition using driving analysis equipment. The behavior of a kart when being driven along a curved section is investigated through this test. Because load movement occurs owing to centrifugal force when driving along a curve, torsional stress acts on the kart's steel frame. In the case of a leisure kart, the maximum torsional stress derived from the torsional fatigue limit was found to be 230 MPa, and the torsional fatigue limit coefficient was 0.65 when driving at a speed of 40 km/h. Furthermore, the driving elements during the cornering of a kart were measured based on an actual auto-test after installing a driving measurement system, and the driving behavior of the kart was analyzed by measuring its vertical displacement.