• Title/Summary/Keyword: 프랙탈 표면

Search Result 41, Processing Time 0.02 seconds

The Analysis of Terrain and Topography using Fractal (프랙탈 기법에 의한 지형의 특성분석)

  • Kwon, Kee-Wook;Jee, Hyung-Kyu;Lee, Jong-Dal
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.6
    • /
    • pp.530-542
    • /
    • 2005
  • In this study, GIS method has been used to get fractal characteristics. Using the projected area and surface area, 2 dimensional fractal characteristic of terrain was found out. Correlation of fractal dimension and mean slope were also checked over. Results are as below. 1) To get a fractal dimension, the method which is using the surface area is also directly proportional to complexity of the terrain as other fractal dimension. 2) Fractal dimensions using the surface area, that is proposed in this thesis are carried out as below : Uiseong : $2.02{\sim}2.15$ Yeongcheon : $2.10{\sim}2.24$. These values are in a range of fractal $2.10{\sim}2.20$ dimensions which has known. 3) Correlation of mean slope and fractal dimension is diminished about 30% in a region which is more than $25^{\circ}$ of mean slope. So, in this region using the fractal dimension method is better than using the mean slope. From this study, on formula using the projected area and surface area is still good to get a fractal dimension that has been found. But to confirm this method the region of research should be wider and be set up the correlation of mean slope, surface area and fractal dimension. It can be applicable to restoration of terrain and traffic flow analysis in the future research.

  • PDF

Quantification Analysis of Element Surface by Fractal Dimension (프랙탈 차원에 의한 소자 표면의 정량화 분석)

  • Kyung-Jin, Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.145-149
    • /
    • 2023
  • High-resolution images of surfaces provide detailed information on pores or shapes with specific sizes ranging from nano sizes to micrometers. However, it is not yet clear to determine an efficient association for pores or shapes from high-resolution images of surfaces. For the efficient association of pores and shapes, the surface characteristics of the device were considered as fractal dimensions by taking SEM photographs and binarizing the images. The fractal program was directly coded for surface analysis of the device. The device surface characteristics and electrical characteristics are thought to be related to the fractal dimension. The fractal dimension decreased with an increase in internal pores. The density and grain boundary of particles, which are structural characteristics of the device surface, were related to the fractal dimension. The particle size decreased with an increase in the fractal dimension and was uniformly formed. When the particles were uniformly formed, fewer pores were present and the fractal dimension increased.

Analysis of Electromagnetic Wave Scattering From a Perfectly Conducting One Dimensional Fractal Surface Using the Monte-Carlo Moment Method (몬테칼로 모멘트 방법을 이용한 1차원 프랙탈 완전도체 표면에서의 전자파 산란 해석)

  • 최동묵;김채영
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.566-574
    • /
    • 2002
  • In this paper, the scattered field from a perfectly conducting fractal surface by the Monte-Carlo moment method was computed. An one-dimensional fractal surface was generated by using the fractional Brownian motion model. Back scattering coefficients are calculated with different values of the spectral parameter(S$\_$0/), and fractal dimension(D) which determine characteristics of the fractal surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 80, 2048, and 64L, respectively. In order to verify the computed results these results are compared with those of small perturbation methods, which show good agreement between them.

Electromagnetic Wave Scattering from a Perfectly Conducting Fractional Brownian Motion Fractal Surface Using a Monte-Carlo FDTD Method (몬테칼로 유한차분 시간영역 방법을 이용한 프랙셔널 브라운 모션 프랙탈 완전도체 표면에서의 전자파 산란)

  • Choi, Dong-Muk;Kim, Che-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.63-69
    • /
    • 2003
  • In this paper, the scattered field from a perfectly conducting fractal surface by Finite-Difference Time-Domain(FDTD) method was computed. A one-dimensional fractal surface was generated by using the fractional Brownian motion model. Back scattering coefficients are calculated with different values of the spectral parameter(S0), fractal dimension(D) which determine characteristics of the fractal surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 80, 1024, 16λ, respectively. In order to verify the computed results these results are compared with those of small perturbation methods, which show good agreement between them.

Analysis of spatial self-similarity in river basin (하천유역의 공간 자기상사성 분석)

  • Hwang, Eui-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.463-463
    • /
    • 2012
  • 본 연구에서는 유역의 공간적 자기상사성 평가를 통하여 하천유역의 특성을 파악하고자 하였다. 이를 위해 자기상사성 분석의 지표인 허스트지수 및 프랙탈차원을 산정하였다. 허스트지수(h)의 산정은 모형에 있어서 상당히 중요한 부분을 차지한다. 이 지수에 따라 지형의 모양은 서로 상이하게 다루어질 수 있기 때문이다. 허스트지수의 산정은 Hurst가 제시한 방법(허스트지수), Peters의 수정식, Mandebrot와 Wallis의 Pox 도표, 투영면적 및 표면적 비율 방법(면적지수)이 있으며, 본 연구에서는 유역의 공간 자기상성 분석을 위해 면적지수에 의한 방법과 허스트지수에 의한 방법을 적용하였다. 지형자료는 LiDAR 측량 및 하천 횡단측량에 의해 생성된 정밀 DEM을 활용하여 허스트지수 및 프랙탈차원을 산정하였다. 면적지수 및 허스트지수에 의한 프랙탈차원과 평균경사도와의 관계에서 아라천유역은 결정계수 R2값이 94.9 %, 99.5 %로 비교적 결정계수값이 크게 나타났으며, 경사도와 표면적과의 관계에서 결정계수 R2값은 81.8 %로 분석되었다. 이는 면적지수와 허스트지수에 의해 산정된 프랙탈 차원은 유역의 지형특성 인자로 타당성을 갖는 것으로 판단된다.

  • PDF

Application of Fractal Geometry to Interfacial Electrochemistry - I. Diffusion Kinetics at Fractal Electrodes

  • Shin Heon-Cheol;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • This article is concerned with the application of the fractal geometry to interfacial electrochemistry. Especially, we dealt with diffusion kinetics at the fractal electrodes. This article first explained the basic concepts of the Sacral geometry which has proven to be fruitful for modelling rough and irregular surfaces. Finally this article examined the electrochemical responses to various signals under diffusion-limited reactions during diffusion towards the fractal interfaces: The generalised forms, including the fractal dimension of the electrode surfaces, of Cottrell, Sand and Randles-Sevcik equations were theoretically derived and explained in chronoamperomety, chronopotentiometry and linear sweep/cyclic voltammetry, respectively.

Fractal Analysis of the Carbonization Pattern Formed on the Surface of a Phenolic Resin (페놀수지 표면에 형성된 탄화패턴에 대한 프랙탈 해석)

  • Kim, Jun-Won;Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.124-129
    • /
    • 2010
  • When a phenolic resin is carbonized by the leakage current flowing along its surface, the carbonization pattern is one of the most important factors to determine its carbonization characteristics. However, the typical carbonization pattern of a phenolic resin is too complicated to be analyzed by conventional Euclidean geometry. In most cases, such a complicated shape shows a fractal structure. It is possible, therefore, to examine the characteristics of the carbonization pattern regarding a given phenolic resin. In order to quantitatively investigate the carbonization pattern of the phenolic resin carbonized by a leakage current, in this paper, the fractal dimension of the carbonization pattern has been calculated as a function of the magnitude of a leakage current and the distance between two electrodes. For reliability of calculation, the correlation function as well as the box counting method has been used to calculate the fractal dimension. According to the result of calculation, the fractal dimension increases as the current increases at the constant electrode gap distance. However, there is no significant relation between the fractal dimension and the electrode gap distance at a constant current.

A Study on the Surface Asperities Assessment by Fractal Analysis (프랙탈 해석을 이용한 표면 미세형상 평가 기법에 관한 연구)

  • 조남규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.7-14
    • /
    • 1998
  • In this paper, Fractal analysis applied to evaluate machined surface profile. The spectrum method was used to calculate fractal dimension of generated surface profiles by Weierstrass-Mandelbrot fractal function. To avoid estimation errors by low frequency characteristics of FFT, the Maximum Entropy Method (MEM) was examined. We suggest a new criterion to define the MEM order m. MEM power spectrum with our criterion is proved to be advantageous by the comparison with the experimental results.

  • PDF

Automatic Noise Band Elemination of Hyperion Hyperspectral Image using Fractal Dimension (프랙탈 차원을 이용한 Hyperion 초분광 영상의 자동 노이즈 밴드 제거)

  • Chang, An-Jin;Kim, Yong-Il;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.219-223
    • /
    • 2008
  • 초분광 영상은 기존의 다중분광 영상보다 많은 파장대의 영상을 취득하기 때문에 다양한 분야의 연구에 이용되고 있다. 하지만 밴드별로 취득하는 파장대가 짧고 밴드수가 많아, 밴드간의 높은 상관관계 및 노이즈 밴드가 존재한다. 이로 인해 기존에 알려진 분석기법의 적용결과가 제대로 도출되지 않는다. 따라서 초분광 영상을 이용할 경우, 노이즈가 많이 포함된 밴드를 제거한 후 영상분석을 하는 것이 보다 효율적이다. 본 연구에서는 초분광 영상(Hyperspectral Image)의 전처리 과정 중 노이즈 밴드 제거에 초점을 맞추었으며, 이를 위해 프랙탈 차원을 이용하였다. 프랙탈 차원 측정방법 중 삼각기둥 표면적 기법을 이용하였다. 프랙탈 차원을 측정하고, Continuum Removal 기법을 이용하여 경향을 살펴보았다. 경험적으로 구한 임계값을 통해 상대적으로 정보량이 적은 밴드를 노이즈 밴드로 판단하여 제거하였다. 실험 영상으로는 EO-1 위성에서 취득되는 Hyperion 초분광 영상을 사용하였다. 실험 결과 프랙탈 분석을 통해 Hyperion 초분광 영상의 노이즈 밴드를 자동으로 추출하여 제거할 수 있음을 확인하였다.

  • PDF

An Evaluation Technique of Surface Roughness of Corroded Reinforcing Bar-in-Coils (코일철근의 표면 거칠기 물리량 평가 기술)

  • Roh, Young-Sook;Cho, Kang Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6551-6557
    • /
    • 2015
  • This paper discusses the surface roughness of corroded reinforcement rebar-in-coil focusing on the quantitative measurement technique using 3D scanner. Reinforcement rebar-in-coil was stacked in site for 0 day, 3 days, 7 days, 14 days and 21 days. And rebar-in-coil was corroded 0.04%, 0.3367%, 0.6157%, 0.7898%, and 1.1965% respectively. Using 3-dimensional scanner, each surface profile of reinforcement rebar-in-coil was established, and surface roughness was measured. Through the tests and analyses of corroded rebar-in-coil, the increase of fractal dimension for each rebar-in-coil was measured as 0.0216, 0.0235, 0.028, 0.0319, and 0.0455 for different stacked periods. Therefore, surface assessment technique using fractal dimension showed similar results with the actual corrosion rate.