• Title/Summary/Keyword: 프랙탈

Search Result 515, Processing Time 0.059 seconds

Study on applicability of fractal theory to cohesive sediment in small rivers (프랙탈 이론의 소하천 점착성 유사 적용에 관한 연구)

  • Lim, Byung Gu;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.887-901
    • /
    • 2016
  • Cohesive sediments form flocs through the flocculation process. The size and density of floc are variable whereas those of a fine sediment are always assumed to be constant. The settling velocity, one of main factors of sediment transport, is determined by size and density of particle. Therefore, the flocculation process plays an important role in transport of cohesive sediment. It is of great difficulty to directly measure the density of floc in the field due to technical limitation at present. It is a popular approach to estimate the density of floc by applying the fractal theory. The main assumption of fractal theory is the self-similarity. This study aims to examine the applicability of fractal theory to cohesive sediment in small rivers of Korea. Sampling sediment has been conducted in two different basins of Geum river and Yeongsan river. The results of settling experiments using commercial camera show that the sediment in Geum river basin follows the main concept of fractal theory whereas the sediment in Yeongsan river basin does not have a clear relationship between floc size and fractal dimension. It is known from this finding that the fractal theory is not easily applicable under the condition that the cohesive sediment includes the high content of organic matter.

The Analysis of Tidal Channel Development Using Fractal (프랙탈 기법을 이용한 조류로 발달 양상의 분석)

  • Eom, Jin-Ah;Lee, Yoon-Kyung;Ryu, Joo-Hyung;Won, Joong-Sun;Choi, Jung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • The tidal channel is influenced by sediment type, grain size, grain composition and tidal currents in tidal flat. The development of tidal channel including density, shape and order can be used to analyze the characteristics of tidal channel. The quantitative investigation to the tidal channel is insufficiency. In this paper, we represented the fractal analysis method according to the quantitatively analysis in tidal channel and compared with the different intertidal channel patterns. The tidal channel was extracted from the IKONOS image of the southern part of the Kanghwa-do. We used the Box-counting method to estimate fractal dimensions for each tidal channel. As a result, the fractal dimension values (D) were 1.31 in the southern Kanghwa-Do. Linear pattern and less dense channel development area had low D values (from 1.0563 to 1.0672). Dendritic pattern and dense channel development area had high D values (from 1.2550 to 1.3016). In other words, fractal dimension values had difference about 0.2 values according to the characteristic of tidal channel development. We concluded that fractal analysis can be able to quantitatively classification in tidal channel.

Fractal Viedo Coding in Wavelet Transform Domain (웨이브릿 변환 영역에서의 프랙탈을 이용한 동영상 압축)

  • Bae, Sung-Ho;Han, Dong-Seok;Park, Gil-Heum
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.4
    • /
    • pp.1121-1131
    • /
    • 1997
  • In video coding at high compression rate, factal compression schemes in spatial domain have outstanding blocking artifacts and compression schemes in wavelet transform domain have rinfing artifacts at edges. In order to compensate these disadvantages, we propose a fractal video coding in wavelet transrorm domain which leads to clear edges without blocking atrifacts even at high bompression rate. The proposed method performs variable block sized motion estimation by using correlation among different subbands. Then the wavelet coefficients which are not enoded dffectively by the motion estimation are compressed by inter-frame fractal coding which predicts fine scale subbands hierarchically from the next coarser scale subbands. Computer sumulations with sev-eral test images wequences show that the proposed method shows better performance than the conventional video coding methods using fractal and wavelet.

  • PDF

The Anlysis of Fractal Characteristics in River Basin using GIS (GIS를 이용한 하천유역의 프랙탈 특성 분석)

  • Cha, Sang-Hwa;Kwon, Kee-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.51-60
    • /
    • 2001
  • This study analyzed fractal characteristics of river basin by using GIS. In this study, topographical factors in river basin was grid-analyzed for each cell size by using GIS and regression formula was derived by analyzing correlation among topographical factors and cell size which were calculated here. And, analysis of fractal characteristics of river by using the result calculated from 1) showed that among topographical factors, river length only increases according as cell size increases. The result of calculating fractal dimension for each cell size shows that river length, basin area, and centroidal flow path are 1.028, 1.0026 and 1.0061 respectively.

  • PDF

Analysis of Electromagnetic Wave Scattering From a Perfectly Conducting One Dimensional Fractal Surface Using the Monte-Carlo Moment Method (몬테칼로 모멘트 방법을 이용한 1차원 프랙탈 완전도체 표면에서의 전자파 산란 해석)

  • 최동묵;김채영
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.566-574
    • /
    • 2002
  • In this paper, the scattered field from a perfectly conducting fractal surface by the Monte-Carlo moment method was computed. An one-dimensional fractal surface was generated by using the fractional Brownian motion model. Back scattering coefficients are calculated with different values of the spectral parameter(S$\_$0/), and fractal dimension(D) which determine characteristics of the fractal surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 80, 2048, and 64L, respectively. In order to verify the computed results these results are compared with those of small perturbation methods, which show good agreement between them.

A study on fractal dimensions of art works (미술 작품의 프랙탈 차원 연구)

  • Synn, Chaeki F.;Heo, A-Young;Kim, Seul Gee;Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.305-314
    • /
    • 2016
  • In this study, an analysis is performed for comparing the fractal dimension of Jackson Pollock's art works with that of Korean Infomel art works. In order to test the hypothesis that Jackson Pollock's fractal dimension is different from Korean Informel's, data is collected for the fractal dimensions of 30 Jackson Pollock's and 45 Korean Informel art works. The results show that Korean Informel's fractal dimension is larger than Jackson Pollock's. This might be interpreted that the pattern (in finer scale) of Korean Informel art works is closer to planes, rather than lines or points, compared to that of Jackson Pollock's.

Improvement of Image Compression Using Quantization Technique in Computed Tomography Images (CT영상에서 양자화기법을 이용한 영상압축의 개선)

  • Park, Jae-Hong;Yoo, Ju-Yeon;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.505-510
    • /
    • 2018
  • In this study, we allocate bits by quantizing these fractal coefficients through a quantizer which can extract the probability distribution. In the coding process of IFS, a variable size block method is used to shorten the coding time and improve the compression ratio. In the future, it will be necessary to further improve the coding time and the compression rate while maintaining the best image quality in the fractal coding process.

Vowel Recognition Using the Fractal Dimension (프랙탈 차원을 이용한 모음인식)

  • 최철영;김형순;김재호;손경식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1140-1148
    • /
    • 1994
  • In this paper, we carried out some experiments on the Korean vowel recognition using the fractal dimension of the speech signals. We chose the Minkowski-Bouligand dimension as the fractal dimension, and computed it using the morphological covering method. For our experiments, we used both the fractal dimension and the LPC cepstrum which is conventionally known to be one of the best parameters for speech recognition, and examined the usefulness of the fractal dimension. From the vowel recognition experiments under various consonant contexts, we achieved the vowel recognition error rates of 5.6% and 3.2% for the case with only LPC cepstrum and that with both LPC cepstrum and the fractal dimension, respectively. The results indicate that the incorporation of the fractal dimension with LPC cepstrum gives more than 40% reduction in recognition errors, and indicates that the fractal dimension is a useful feature parameter for speech recognition.

  • PDF

Application of Fractal Geometry to Interfacial Electrochemistry - I. Diffusion Kinetics at Fractal Electrodes

  • Shin Heon-Cheol;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • This article is concerned with the application of the fractal geometry to interfacial electrochemistry. Especially, we dealt with diffusion kinetics at the fractal electrodes. This article first explained the basic concepts of the Sacral geometry which has proven to be fruitful for modelling rough and irregular surfaces. Finally this article examined the electrochemical responses to various signals under diffusion-limited reactions during diffusion towards the fractal interfaces: The generalised forms, including the fractal dimension of the electrode surfaces, of Cottrell, Sand and Randles-Sevcik equations were theoretically derived and explained in chronoamperomety, chronopotentiometry and linear sweep/cyclic voltammetry, respectively.

Application of Fractal Geometry to Interfacial Electrochemistry - II. Impedance Behaviour of Fractal Electrodes

  • Shin Heon-Cheol;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.26-33
    • /
    • 2001
  • This article involves the application of the fractal geometry to interfacial electrochemistry. Especially, we gave our attention to impedance behaviour of the fractal electrode. First, this article briefly explained the constant phase element (CPE) in electrochemical impedance and the do Levie's transmission line model. Second, we introduced the Nyikos and Pajkossy's theoretical works to approach the CPE phenomena using the fractal geometry. Finally this article presented other various fractal models for analysing the ac response of the rough electrodes.